Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Haoran LIU, Niantai WANG, Yi WANG, Liyue ZHANG, Zhaoyu SU, Wen LIU, Xudan ZHAO. Bayesian Network Structure Algorithm Based on V-structure & Log-Likelihood Orientation and Tabu Hill Climbing[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3272-3281. doi: 10.11999/JEIT210032
Citation: Haoran LIU, Niantai WANG, Yi WANG, Liyue ZHANG, Zhaoyu SU, Wen LIU, Xudan ZHAO. Bayesian Network Structure Algorithm Based on V-structure & Log-Likelihood Orientation and Tabu Hill Climbing[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3272-3281. doi: 10.11999/JEIT210032

Bayesian Network Structure Algorithm Based on V-structure & Log-Likelihood Orientation and Tabu Hill Climbing

doi: 10.11999/JEIT210032
Funds:  The National Key R&D Program of China (2019YFB1707301), The Hebei Talent Engineering Training Support Project (A201903005)
  • Received Date: 2021-01-11
  • Rev Recd Date: 2021-04-21
  • Available Online: 2021-05-07
  • Publish Date: 2021-11-23
  • Hill climbing algorithm has too large search space and is easy to fall into local optimum. In this paper, a new Bayesian network structure algorithm based on V-structure & log-likelihood orientation and Tabu Hill (VTH) climbing is proposed. The algorithm limits the search space by using the oriented maximum weight spanning tree. In the process of maximum weight spanning tree orientation, the orientation strategy based on V-structure and Log-Likelihood (VLL) function is proposed. Tabu Hill Climbing (THC) scoring search strategy is established during the process of search, it combines the tabu list clearing mechanism with the local optimization criteria of hill climbing, the strategy not only ensures the search efficiency, but also improves the global optimization ability. By comparing Hamming distance, F1-value, Balanced Scoring Function(BSF) value and Time with other algorithms in Asia, Car, Child and Alarm standard networks, the effectiveness of the proposed algorithm is verified.
  • loading
  • [1]
    李硕豪, 张军. 贝叶斯网络结构学习综述[J]. 计算机应用研究, 2015, 32(3): 641–646. doi: 10.3969/j.issn.1001-3695.2015.03.001

    LI Shuohao and ZHANG Jun. Review of Bayesian networks structure learning[J]. Application Research of Computers, 2015, 32(3): 641–646. doi: 10.3969/j.issn.1001-3695.2015.03.001
    [2]
    ZHAO Xuan, PENG Benhong, ELAHI E, et al. Optimization of Chinese coal-fired power plants for cleaner production using Bayesian network[J]. Journal of Cleaner Production, 2020, 273: 122837. doi: 10.1016/j.jclepro.2020.122837
    [3]
    MCLACHLAN S, DUBE K, HITMAN G A, et al. Bayesian networks in healthcare: Distribution by medical condition[J]. Artificial Intelligence in Medicine, 2020, 107: 101912. doi: 10.1016/j.artmed.2020.101912
    [4]
    CARRIGER J F and BARRON M G. A Bayesian network approach to refining ecological risk assessments: Mercury and the Florida panther (Puma concolor coryi)[J]. Ecological Modelling, 2020, 418: 108911. doi: 10.1016/j.ecolmodel.2019.108911
    [5]
    ANDERSON B. Using Bayesian networks to perform reject inference[J]. Expert Systems with Applications, 2019, 137: 349–356. doi: 10.1016/j.eswa.2019.07.011
    [6]
    SCANAGATTA M, SALMERÓN A, and STELLA F. A survey on Bayesian network structure learning from data[J]. Progress in Artificial Intelligence, 2019, 8(4): 425–439. doi: 10.1007/s13748-019-00194-y
    [7]
    HECKERMAN D, GEIGER D, and CHICKERING D M. Learning Bayesian networks: The combination of knowledge and statistical data[J]. Machine Learning, 1995, 20(3): 197–243. doi: 10.1007/BF00994016
    [8]
    曹杰. 贝叶斯网络结构学习与应用研究[D].[博士论文], 中国科学技术大学, 2017.

    CAO Jie. Bayesian network structure learning and application[D].[Ph.D. dissertation], University of Science and Technology of China, 2017.
    [9]
    TSAMARDINOS I, BROWN L E, and ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31–78. doi: 10.1007/s10994-006-6889-7
    [10]
    冀俊忠, 张鸿勋, 胡仁兵, 等. 基于禁忌搜索的贝叶斯网结构学习算法[J]. 北京工业大学学报, 2011, 37(8): 1274–1280.

    JI Junzhong, ZHANG Hongxun, HU Renbing, et al. A Tabu-search based Bayesian network structure learning algorithm[J]. Journal of Beijing University of Technology, 2011, 37(8): 1274–1280.
    [11]
    GÁMEZ J A, MATEO J L, and PUERTA J M. Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood[J]. Data Mining and Knowledge Discovery, 2011, 22(1-2): 106–148. doi: 10.1007/s10618-010-0178-6
    [12]
    GÁMEZ J A, MATEO J L, and PUERTA J M. One iteration CHC algorithm for learning Bayesian networks: An effective and efficient algorithm for high dimensional problems[J]. Progress in Artificial Intelligence, 2012, 1(4): 329–346. doi: 10.1007/s13748-012-0033-7
    [13]
    ARIAS J, GÁMEZ J A, and PUERTA J M. Structural learning of Bayesian networks via constrained hill climbing algorithms: Adjusting trade-off between efficiency and accuracy[J]. International Journal of Intelligent Systems, 2015, 30(3): 292–325. doi: 10.1002/int.21701
    [14]
    刘浩然, 吕晓贺, 李轩, 等. 基于Bayesian改进算法的回转窑故障诊断模型研究[J]. 仪器仪表学报, 2015, 36(7): 1554–1561. doi: 10.3969/j.issn.0254-3087.2015.07.014

    LIU Haoran, LÜ Xiaohe, LI Xuan, et al. A study on the fault diagnosis model of rotary kiln based on an improved algorithm of Bayesian[J]. Chinese Journal of Scientific Instrument, 2015, 36(7): 1554–1561. doi: 10.3969/j.issn.0254-3087.2015.07.014
    [15]
    刘彬, 刘永记, 刘浩然, 等. 基于改进遗传爬山算法的篦冷机熟料换热二次风温故障诊断[J]. 计量学报, 2018, 39(5): 651–658. doi: 10.3969/j.issn.1000-1158.2018.05.10

    LIU Bin, LIU Yongji, LIU Haoran, et al. Fault diagnosis of secondary air temperature of grate cooler cement clinker heat transfer based on improved genetic hill climbing algorithm[J]. Acta Metrologica Sinica, 2018, 39(5): 651–658. doi: 10.3969/j.issn.1000-1158.2018.05.10
    [16]
    CONSTANTINOU A C. Learning Bayesian networks that enable full propagation of evidence[J]. IEEE Access, 2020, 8: 124845–124856. doi: 10.1109/ACCESS.2020.3006472
    [17]
    CHEN Guangjie and GE Zhiqiang. Robust Bayesian networks for low-quality data modeling and process monitoring applications[J]. Control Engineering Practice, 2020, 97: 104344. doi: 10.1016/j.conengprac.2020.104344
    [18]
    YANG Jing, GUO Xiaoxue, AN Ning, et al. Streaming feature-based causal structure learning algorithm with symmetrical uncertainty[J]. Information Sciences, 2018, 467: 708–724. doi: 10.1016/j.ins.2018.04.076
    [19]
    PRIM R C. Shortest connection networks and some generalizations[J]. The Bell System Technical Journal, 1957, 36(6): 1389–1401. doi: 10.1002/j.1538-7305.1957.tb01515.x
    [20]
    DAI Jingguo, REN Jia, and DU Wencai. Decomposition-based Bayesian network structure learning algorithm using local topology information[J]. Knowledge-Based Systems, 2020, 195: 105602. doi: 10.1016/j.knosys.2020.105602
    [21]
    BEHJATI S and BEIGY H. Improved K2 algorithm for Bayesian network structure learning[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103617. doi: 10.1016/j.engappai.2020.103617
    [22]
    ZHAO Jianjun and HO S S. Improving Bayesian network local structure learning via data-driven symmetry correction methods[J]. International Journal of Approximate Reasoning, 2019, 107: 101–121. doi: 10.1016/j.ijar.2019.02.004
    [23]
    CONSTANTINOU A C. The importance of temporal information in Bayesian network structure learning[J]. Expert Systems with Applications, 2021, 164: 113814. doi: 10.1016/j.eswa.2020.113814
    [24]
    JIANG Jinke, WANG Juyun, YU Hua, et al. Poison identification based on Bayesian network: A novel improvement on K2 algorithm via Markov Blanket[C]. The 4th International Conference on Advances in Swarm Intelligence, Harbin, China, 2013: 173–182.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (1278) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return