Citation: | Haoran LIU, Niantai WANG, Yi WANG, Liyue ZHANG, Zhaoyu SU, Wen LIU, Xudan ZHAO. Bayesian Network Structure Algorithm Based on V-structure & Log-Likelihood Orientation and Tabu Hill Climbing[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3272-3281. doi: 10.11999/JEIT210032 |
[1] |
李硕豪, 张军. 贝叶斯网络结构学习综述[J]. 计算机应用研究, 2015, 32(3): 641–646. doi: 10.3969/j.issn.1001-3695.2015.03.001
LI Shuohao and ZHANG Jun. Review of Bayesian networks structure learning[J]. Application Research of Computers, 2015, 32(3): 641–646. doi: 10.3969/j.issn.1001-3695.2015.03.001
|
[2] |
ZHAO Xuan, PENG Benhong, ELAHI E, et al. Optimization of Chinese coal-fired power plants for cleaner production using Bayesian network[J]. Journal of Cleaner Production, 2020, 273: 122837. doi: 10.1016/j.jclepro.2020.122837
|
[3] |
MCLACHLAN S, DUBE K, HITMAN G A, et al. Bayesian networks in healthcare: Distribution by medical condition[J]. Artificial Intelligence in Medicine, 2020, 107: 101912. doi: 10.1016/j.artmed.2020.101912
|
[4] |
CARRIGER J F and BARRON M G. A Bayesian network approach to refining ecological risk assessments: Mercury and the Florida panther (Puma concolor coryi)[J]. Ecological Modelling, 2020, 418: 108911. doi: 10.1016/j.ecolmodel.2019.108911
|
[5] |
ANDERSON B. Using Bayesian networks to perform reject inference[J]. Expert Systems with Applications, 2019, 137: 349–356. doi: 10.1016/j.eswa.2019.07.011
|
[6] |
SCANAGATTA M, SALMERÓN A, and STELLA F. A survey on Bayesian network structure learning from data[J]. Progress in Artificial Intelligence, 2019, 8(4): 425–439. doi: 10.1007/s13748-019-00194-y
|
[7] |
HECKERMAN D, GEIGER D, and CHICKERING D M. Learning Bayesian networks: The combination of knowledge and statistical data[J]. Machine Learning, 1995, 20(3): 197–243. doi: 10.1007/BF00994016
|
[8] |
曹杰. 贝叶斯网络结构学习与应用研究[D].[博士论文], 中国科学技术大学, 2017.
CAO Jie. Bayesian network structure learning and application[D].[Ph.D. dissertation], University of Science and Technology of China, 2017.
|
[9] |
TSAMARDINOS I, BROWN L E, and ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31–78. doi: 10.1007/s10994-006-6889-7
|
[10] |
冀俊忠, 张鸿勋, 胡仁兵, 等. 基于禁忌搜索的贝叶斯网结构学习算法[J]. 北京工业大学学报, 2011, 37(8): 1274–1280.
JI Junzhong, ZHANG Hongxun, HU Renbing, et al. A Tabu-search based Bayesian network structure learning algorithm[J]. Journal of Beijing University of Technology, 2011, 37(8): 1274–1280.
|
[11] |
GÁMEZ J A, MATEO J L, and PUERTA J M. Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood[J]. Data Mining and Knowledge Discovery, 2011, 22(1-2): 106–148. doi: 10.1007/s10618-010-0178-6
|
[12] |
GÁMEZ J A, MATEO J L, and PUERTA J M. One iteration CHC algorithm for learning Bayesian networks: An effective and efficient algorithm for high dimensional problems[J]. Progress in Artificial Intelligence, 2012, 1(4): 329–346. doi: 10.1007/s13748-012-0033-7
|
[13] |
ARIAS J, GÁMEZ J A, and PUERTA J M. Structural learning of Bayesian networks via constrained hill climbing algorithms: Adjusting trade-off between efficiency and accuracy[J]. International Journal of Intelligent Systems, 2015, 30(3): 292–325. doi: 10.1002/int.21701
|
[14] |
刘浩然, 吕晓贺, 李轩, 等. 基于Bayesian改进算法的回转窑故障诊断模型研究[J]. 仪器仪表学报, 2015, 36(7): 1554–1561. doi: 10.3969/j.issn.0254-3087.2015.07.014
LIU Haoran, LÜ Xiaohe, LI Xuan, et al. A study on the fault diagnosis model of rotary kiln based on an improved algorithm of Bayesian[J]. Chinese Journal of Scientific Instrument, 2015, 36(7): 1554–1561. doi: 10.3969/j.issn.0254-3087.2015.07.014
|
[15] |
刘彬, 刘永记, 刘浩然, 等. 基于改进遗传爬山算法的篦冷机熟料换热二次风温故障诊断[J]. 计量学报, 2018, 39(5): 651–658. doi: 10.3969/j.issn.1000-1158.2018.05.10
LIU Bin, LIU Yongji, LIU Haoran, et al. Fault diagnosis of secondary air temperature of grate cooler cement clinker heat transfer based on improved genetic hill climbing algorithm[J]. Acta Metrologica Sinica, 2018, 39(5): 651–658. doi: 10.3969/j.issn.1000-1158.2018.05.10
|
[16] |
CONSTANTINOU A C. Learning Bayesian networks that enable full propagation of evidence[J]. IEEE Access, 2020, 8: 124845–124856. doi: 10.1109/ACCESS.2020.3006472
|
[17] |
CHEN Guangjie and GE Zhiqiang. Robust Bayesian networks for low-quality data modeling and process monitoring applications[J]. Control Engineering Practice, 2020, 97: 104344. doi: 10.1016/j.conengprac.2020.104344
|
[18] |
YANG Jing, GUO Xiaoxue, AN Ning, et al. Streaming feature-based causal structure learning algorithm with symmetrical uncertainty[J]. Information Sciences, 2018, 467: 708–724. doi: 10.1016/j.ins.2018.04.076
|
[19] |
PRIM R C. Shortest connection networks and some generalizations[J]. The Bell System Technical Journal, 1957, 36(6): 1389–1401. doi: 10.1002/j.1538-7305.1957.tb01515.x
|
[20] |
DAI Jingguo, REN Jia, and DU Wencai. Decomposition-based Bayesian network structure learning algorithm using local topology information[J]. Knowledge-Based Systems, 2020, 195: 105602. doi: 10.1016/j.knosys.2020.105602
|
[21] |
BEHJATI S and BEIGY H. Improved K2 algorithm for Bayesian network structure learning[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103617. doi: 10.1016/j.engappai.2020.103617
|
[22] |
ZHAO Jianjun and HO S S. Improving Bayesian network local structure learning via data-driven symmetry correction methods[J]. International Journal of Approximate Reasoning, 2019, 107: 101–121. doi: 10.1016/j.ijar.2019.02.004
|
[23] |
CONSTANTINOU A C. The importance of temporal information in Bayesian network structure learning[J]. Expert Systems with Applications, 2021, 164: 113814. doi: 10.1016/j.eswa.2020.113814
|
[24] |
JIANG Jinke, WANG Juyun, YU Hua, et al. Poison identification based on Bayesian network: A novel improvement on K2 algorithm via Markov Blanket[C]. The 4th International Conference on Advances in Swarm Intelligence, Harbin, China, 2013: 173–182.
|