Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHUANG Ling, ZHANG Wenjing. A Lattice Structure Optimization Method and Sensitivity Analysis of Finite Impulse Response Filter[J]. Journal of Electronics & Information Technology, 2022, 44(2): 686-693. doi: 10.11999/JEIT210028
Citation: ZHUANG Ling, ZHANG Wenjing. A Lattice Structure Optimization Method and Sensitivity Analysis of Finite Impulse Response Filter[J]. Journal of Electronics & Information Technology, 2022, 44(2): 686-693. doi: 10.11999/JEIT210028

A Lattice Structure Optimization Method and Sensitivity Analysis of Finite Impulse Response Filter

doi: 10.11999/JEIT210028
Funds:  Project Supported by the 29th Research Institute of CETC
  • Received Date: 2021-01-08
  • Rev Recd Date: 2021-04-16
  • Available Online: 2021-04-29
  • Publish Date: 2022-02-25
  • Finite Impulse Response(FIR) filter is the main component of multi-carrier modulation system in wireless communication research. Considering the problem of FIR filter performance degradation caused by the finite word length effect, an FIR filter lattice structure is proposed to optimize the filter coefficient error caused by quantization, that is, to reduce the coefficient sensitivity. The state space structure is used to express the corresponding improved lattice structure coefficients, and the coefficient sensitivity expression is derived and analyzed. The simulation results show that the sensitivity of the improved lattice structure coefficient is related to the sampling period. Compared with the traditional lattice structure, under the constraints of quantization word length and sampling period, the frequency response characteristic curve of the improved lattice structure is closer to the ideal frequency response characteristic curve, the coefficient sensitivity is smaller, and the ability of resisting finite word length effect is better.
  • loading
  • [1]
    JIANG Lei, ZHANG Haijian, CHENG Shuai, et al. An overview of FIR filter design in future multicarrier communication systems[J]. Electronics, 2020, 9(4): 599. doi: 10.3390/electronics9040599
    [2]
    庄陵, 马靖怡, 王光宇, 等. FIR数字滤波器零极点灵敏度分析及优化实现[J]. 通信学报, 2018, 39(9): 168–177. doi: 10.11959/j.issn.1000-436x.2018167

    ZHUANG Ling, MA Jingyi, WANG Guangyu, et al. Analysis and optimal realization of pole-zero sensitivity for FIR digital filters[J]. Journal on Communications, 2018, 39(9): 168–177. doi: 10.11959/j.issn.1000-436x.2018167
    [3]
    RAJAN A, JAMADAGNI H S, and RAO A. Minimizing quantization effects in digital filtering[C]. 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island, USA, 2009: 501–506. doi: 10.1109/DSP.2009.4785975.
    [4]
    RENCZES B, KOLLÁR I, MOSCHITTA A, et al. Numerical optimization problems of sine-wave fitting algorithms in the presence of roundoff errors[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(8): 1785–1795. doi: 10.1109/TIM.2016.2562218
    [5]
    LI Gang, GEVERS M, and SUN Youxian. Performance analysis of a new structure for digital filter implementation[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(4): 474–482. doi: 10.1109/81.841849
    [6]
    HUANG Chaogeng, LI Gang, and XU Hong. Sensitivity analysis of a novel digital filter structure[C]. 2009 7th International Conference on Information, Communications and Signal Processing, Macau, China, 2009: 1–5. doi: 10.1109/ICICS.2009.5397476.
    [7]
    黄朝耿, 李刚. 一种高效数字滤波器结构及其灵敏度分析[J]. 电路与系统学报, 2010, 15(2): 80–86. doi: 10.3969/j.issn.1007-0249.2010.02.015

    HUANG Chaogeng and LI Gang. An efficient orthogonal digital filter structure with sensitivity analysis[J]. Journal of Circuits and Systems, 2010, 15(2): 80–86. doi: 10.3969/j.issn.1007-0249.2010.02.015
    [8]
    KO H J and TSAI J J P. Robust and computationally efficient digital IIR filter synthesis and stability analysis under finite precision implementations[J]. IEEE Transactions on Signal Processing, 2020, 68: 1807–1822. doi: 10.1109/TSP.2020.2977848
    [9]
    LIU Yin and PARHI K K. Linear-phase lattice FIR digital filter architectures using stochastic logic[J]. Journal of Signal Processing Systems, 2018, 90(5): 791–803. doi: 10.1007/s11265-017-1224-z
    [10]
    GRAY A and MARKEL J. Digital lattice and ladder filter synthesis[J]. IEEE Transactions on Audio and Electroacoustics, 1973, 21(6): 491–500. doi: 10.1109/TAU.1973.1162522
    [11]
    LIM Y C. On the synthesis of IIR digital filters derived from single channel AR lattice network[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 741–749. doi: 10.1109/TASSP.1984.1164394
    [12]
    LI Gang, LIM Y C, and HUANG Chaogeng. Very robust low complexity lattice filters[J]. IEEE Transactions on Signal Processing, 2010, 58(12): 6093–6104. doi: 10.1109/TSP.2010.2077635
    [13]
    HUANG Chaogeng, LI Gang, XU Zhixing, et al. Design of optimal digital lattice filter structures based on genetic algorithm[J]. Signal Processing, 2012, 92(4): 989–998. doi: 10.1016/j.sigpro.2011.10.011
    [14]
    张玉洪, 保铮. FIR数字滤波器的简化格型实现[J]. 电子与信息学报, 1988, 10(3): 193–201.

    ZHANG Yuhong and BAO Zheng. Simplified lattice realization of fir digital filters[J]. Journal of Electronics &Information Technology, 1988, 10(3): 193–201.
    [15]
    ANDREWS J G, BUZZI S, CHOI W, et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082. doi: 10.1109/JSAC.2014.2328098
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (882) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return