Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
NIU Ying, ZHANG Xuncai. An Image Encryption Algorithm Based on Filling Curve and Adjacent Pixel Bit Scrambling[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1137-1146. doi: 10.11999/JEIT210023
Citation: NIU Ying, ZHANG Xuncai. An Image Encryption Algorithm Based on Filling Curve and Adjacent Pixel Bit Scrambling[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1137-1146. doi: 10.11999/JEIT210023

An Image Encryption Algorithm Based on Filling Curve and Adjacent Pixel Bit Scrambling

doi: 10.11999/JEIT210023
Funds:  The National Natural Science Foundation of China (62102374, 62072417), The Key Research and Development Program of Henan Province (212102210028, 202102210177)
  • Received Date: 2021-01-08
  • Rev Recd Date: 2021-10-06
  • Available Online: 2021-10-27
  • Publish Date: 2022-03-28
  • To improve the security of image transmission, an encryption algorithm based on filling curve and adjacent pixel bit scrambling is proposed. Firstly, a new filling curve is designed and used to scramble image pixels globally. Secondly, the chaotic sequences are taken as the starting point and step length of Josephus traversal, and the adjacent pixels are bit scrambled by the improved Josephus traversal method. Through double scrambling, the high correlation between pixels of the plain image is broken. Finally, the security of the method is further improved by two-way ciphertext feedback. In addition, an adaptive key generation method associated with the plain image is designed to overcome the chosen/known-plaintext attack. The proposed scheme is analyzed from the aspects of key-space, key sensitivity, information entropy and correlations. The results show that this algorithm has good performance and sufficient security.
  • loading
  • [1]
    KAUR M and KUMAR V. A comprehensive review on image encryption techniques[J]. Archives of Computational Methods in Engineering, 2020, 27(1): 15–43. doi: 10.1007/s11831-018-9298-8
    [2]
    李付鹏, 刘敬彪, 王光义, 等. 基于混沌集的图像加密算法[J]. 电子与信息学报, 2020, 42(4): 981–987. doi: 10.11999/JEIT190344

    LI Fupeng, LIU Jingbiao, WANG Guangyi, et al. An image encryption algorithm based on chaos set[J]. Journal of Electronics &Information Technology, 2020, 42(4): 981–987. doi: 10.11999/JEIT190344
    [3]
    FRIDRICH J. Symmetric ciphers based on two-dimensional chaotic maps[J]. International Journal of Bifurcation and Chaos, 1998, 8(6): 1259–1284. doi: 10.1142/S021812749800098X
    [4]
    LI Chunhu, LUO Guangchun, QIN Ke, et al. An image encryption scheme based on chaotic tent map[J]. Nonlinear Dynamics, 2017, 87(1): 127–133. doi: 10.1007/s11071-016-3030-8
    [5]
    SOLAK E, ÇOKAL C, YILDIZ O T, et al. Cryptanalysis of fridrich's chaotic image encryption[J]. International Journal of Bifurcation and Chaos, 2010, 20(5): 1405–1413. doi: 10.1142/S0218127410026563
    [6]
    RHOUMA R, SOLAK E, and BELGHITH S. Cryptanalysis of a new substitution-diffusion based image cipher[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(7): 1887–1892. doi: 10.1016/j.cnsns.2009.07.007
    [7]
    HUA Zhongyun and ZHOU Yicong. Image encryption using 2D logistic-adjusted-sine map[J]. Information Sciences, 2016, 339: 237–253. doi: 10.1016/j.ins.2016.01.017
    [8]
    CHEN Chen, SUN Kehui, and HE Shaobo. An improved image encryption algorithm with finite computing precision[J]. Signal Processing, 2020, 168: 107340. doi: 10.1016/j.sigpro.2019.107340
    [9]
    FLORES-VERGARA A, INZUNZA-GONZALEZ E, GARCIA-GUERRERO E E, et al. Implementing a chaotic cryptosystem by performing parallel computing on embedded systems with multiprocessors[J]. Entropy, 2019, 21(3): 268. doi: 10.3390/e21030268
    [10]
    ZHANG Yong. The fast image encryption algorithm based on lifting scheme and chaos[J]. Information Sciences, 2020, 520: 177–194. doi: 10.1016/j.ins.2020.02.012
    [11]
    廖春成, 周小平, 廖春龙, 等. 像素位置与比特双重置乱的混沌图像加密算法[J]. 中国科技论文, 2014, 9(1): 112–116. doi: 10.3969/j.issn.2095-2783.2014.01.022

    LIAO Chuncheng, ZHOU Xiaoping, LIAO Chunlong, et al. Chaotic image encryption algorithm based on dual scrambling of pixel position and bit[J]. China Sciencepaper, 2014, 9(1): 112–116. doi: 10.3969/j.issn.2095-2783.2014.01.022
    [12]
    LIU Wenhao, SUN Kehui, and ZHU Congxu. A fast image encryption algorithm based on chaotic map[J]. Optics and Lasers in Engineering, 2016, 84: 26–36. doi: 10.1016/j.optlaseng.2016.03.019
    [13]
    LI Yueping, WANG Chunhua, and CHEN Hua. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation[J]. Optics and Lasers in Engineering, 2017, 90: 238–246. doi: 10.1016/j.optlaseng.2016.10.020
    [14]
    SHAHNA K U and MOHAMED A. A novel image encryption scheme using both pixel level and bit level permutation with chaotic map[J]. Applied Soft Computing, 2020, 90: 106162. doi: 10.1016/j.asoc.2020.106162
    [15]
    KANDAR S, CHAUDHURI D, BHATTACHARJEE A, et al. Image encryption using sequence generated by cyclic group[J]. Journal of Information Security and Applications, 2019, 44: 117–129. doi: 10.1016/j.jisa.2018.12.003
    [16]
    MOZAFFARI S. Parallel image encryption with bitplane decomposition and genetic algorithm[J]. Multimedia Tools and Applications, 2018, 77(19): 25799–25819. doi: 10.1007/s11042-018-5817-8
    [17]
    WANG Xingyuan, ZHU Xiaoqiang, and ZHANG Yingqian. An image encryption algorithm based on Josephus traversing and mixed chaotic map[J]. IEEE Access, 2018, 6: 23733–23746. doi: 10.1109/ACCESS.2018.2805847
    [18]
    YANG Gelan, JIN Huixia, and Bai Na. Image encryption using the chaotic Josephus matrix[J]. Mathematical Problems in Engineering, 2014, 2014: 632060. doi: 10.1155/2014/632060
    [19]
    CHAI Xiuli, GAN Zhihua, YANG Kang, et al. An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations[J]. Signal Processing:Image Communication, 2017, 52: 6–19. doi: 10.1016/j.image.2016.12.007
    [20]
    SUN Shuliang. A novel hyperchaotic image encryption scheme based on DNA encoding, pixel-level scrambling and bit-level scrambling[J]. IEEE Photonics Journal, 2018, 10(2): 7201714. doi: 10.1109/JPHOT.2018.2817550
    [21]
    QI Guoyuan, VAN WYK M A, VAN WYK B J, et al. A new hyperchaotic system and its circuit implementation[J]. Chaos, Solitons & Fractals, 2009, 40(5): 2544–2549. doi: 10.1016/j.chaos.2007.10.053
    [22]
    AQEEL-UR-REHMAN, LIAO Xiaofeng, KULSOOM A, et al. A modified (Dual) fusion technique for image encryption using SHA-256 hash and multiple chaotic maps[J]. Multimedia Tools and Applications, 2016, 75(18): 11241–11266. doi: 10.1007/s11042-015-2851-7
    [23]
    林土胜, 徐亚国. 信息加密的混沌流密码受参数变化影响的实验研究[J]. 中山大学学报:自然科学版, 2004, 43(S2): 101–104. doi: 10.3321/j.issn:0529-6579.2004.z2.026

    LIN Tusheng and XU Yaguo. Experimental study of different parameters on chaotic stream ciphers for information encryption[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(S2): 101–104. doi: 10.3321/j.issn:0529-6579.2004.z2.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (1010) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return