Advanced Search
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
ZHU Yuhang, LIU Shuxin, JI Lixin, HE Zanyuan, LI Yingle. A Temporal Link Predict Algorithm Based on Fusion Local Structure Influence[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1440-1452. doi: 10.11999/JEIT210019
Citation: ZHU Yuhang, LIU Shuxin, JI Lixin, HE Zanyuan, LI Yingle. A Temporal Link Predict Algorithm Based on Fusion Local Structure Influence[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1440-1452. doi: 10.11999/JEIT210019

A Temporal Link Predict Algorithm Based on Fusion Local Structure Influence

doi: 10.11999/JEIT210019
Funds:  The National Natural Science Foundation of China (61521003, 61803384)
  • Received Date: 2021-01-06
  • Rev Recd Date: 2021-08-23
  • Available Online: 2021-09-13
  • Publish Date: 2022-04-18
  • Link prediction aims to discover missing connected edges and possible future interaction in complex networks. The evolution mechanism of temporal networks has gained the attention of researchers with its ubiquitous applications in a variety of real-world scenarios. At present, many methods based on time series analysis are proposed, but the influence of the network evolution process on the network itself is ignored, and the methods based on the static network algorithm only consider the influence of the evolution of edges, which may lead to inadequate utilization of feature information and can not achieve better prediction accuracy. In view of the above problems, a novel Temporal Link Prediction algorithm base on Fusion Local Structure Influence (TLP-FLSI) is proposed, which fuses the impact of local nodes and edges. Firstly, based on the influence of network topology structure, Common Temporal Link Prediction Model(CTLPM)is proposed. Secondly, the evolution mechanism of the interaction between topological entities on the dynamic network is studied, and the evolution factors of nodes and edges, as well as the decay evolution factors of time series are defined respectively, and considering various factors, TLP-FLSI is derivated from CTLPM. Finally, compared with traditional temporal link predict method, including moving average methods, error correction methods, extended weighted method, graph attention methods, experimental results of seven real data sets show that TLP-FLSI achieves great improvement in accuracy and ranking score.
  • loading
  • [1]
    PORTER M A. Nonlinearity + Networks: A 2020 Vision[M]. KEVREKIDIS P G, CUEVAS-MARAVER J, and SAXENA A. Emerging Frontiers in Nonlinear Science. Cham: Springer, 2020: 131–159. doi: 10.1007/978-3-030-44992-6_6.
    [2]
    WANG Yongcheng, WANG Yu, LIN Xinye, et al. The influence of network structural preference on link prediction[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 6148273. doi: 10.1155/2020/6148273
    [3]
    KERRACHE S, ALHARBI R, and BENHIDOUR H. A scalable similarity-popularity link prediction method[J]. Scientific Reports, 2020, 10(1): 6394. doi: 10.1038/s41598-020-62636-1
    [4]
    DIVAKARAN A and MOHAN A. Temporal link prediction: A survey[J]. New Generation Computing, 2020, 38(1): 213–258. doi: 10.1007/s00354-019-00065-z
    [5]
    李治成, 吉立新, 刘树新, 等. 基于拓扑稳定性的有向网络链路预测方法[J]. 计算机应用研究, 2020, 37(12): 3744–3748. doi: 10.19734/j.issn.1001-3695.2019.09.0550

    LI Zhicheng, JI Lixin, LIU Shuxin, et al. Link prediction method based on topological stability in directed network[J]. Application Research of Computers, 2020, 37(12): 3744–3748. doi: 10.19734/j.issn.1001-3695.2019.09.0550
    [6]
    王凯, 刘树新, 陈鸿昶, 等. 一种基于节点间资源承载度的链路预测方法[J]. 电子与信息学报, 2019, 41(5): 1225–1234. doi: 10.11999/JEIT180553

    WANG Kai, LIU Shuxin, CHEN Hongchang, et al. A new link prediction method for complex networks based on resources carrying capacity between nodes[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1225–1234. doi: 10.11999/JEIT180553
    [7]
    刘树新, 李星, 陈鸿昶, 等. 基于资源传输匹配度的复杂网络链路预测方法[J]. 通信学报, 2020, 41(6): 70–79. doi: 10.11959/j.issn.1000-436x.2020124

    LIU Shuxin, LI Xing, CHEN Hongchang, et al. Link prediction method based on matching degree of resource transmission for complex network[J]. Journal on Communications, 2020, 41(6): 70–79. doi: 10.11959/j.issn.1000-436x.2020124
    [8]
    DA SILVA SOARES P R and PRUDÊNCIO R B C. Time series based link prediction[C]. The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 2012, 20: 1–7.
    [9]
    HUANG Zan and LIN D K J. The time-series link prediction problem with applications in communication surveillance[J]. INFORMS Journal on Computing, 2009, 21(2): 286–303. doi: 10.1287/ijoc.1080.0292
    [10]
    GÜNEŞ İ, GÜNDÜZ-ÖĞÜDÜCÜ Ş, and ÇATALTEPE Z. Link prediction using time series of neighborhood-based node similarity scores[J]. Data Mining and Knowledge Discovery, 2016, 30(1): 147–180. doi: 10.1007/s10618-015-0407-0
    [11]
    刘继嘉, 王童, 何兴盛, 等. 一种基于混合结构的动态网络链路预测算法[J]. 电子技术, 2018, 47(7): 53–59. doi: 10.3969/j.issn.1000-0755.2018.07.015

    LIU Jijia, WANG Tong, HE Xingsheng, et al. A link prediction method of dynamic network based on hybrid structure[J]. Electronic Technology, 2018, 47(7): 53–59. doi: 10.3969/j.issn.1000-0755.2018.07.015
    [12]
    MUNASINGHE L and ICHISE R. Time score: A new feature for link prediction in social networks[J]. IEICE TRANSACTIONS on Information and Systems, 2012, E95-D(3): 821–828. doi: 10.1587/transinf.E95.D.821
    [13]
    ZHANG Zhongbao, WEN Jian, SUN Li, et al. Efficient incremental dynamic link prediction algorithms in social network[J]. Knowledge-Based Systems, 2017, 132: 226–235. doi: 10.1016/j.knosys.2017.06.035
    [14]
    邓志宏, 老松杨, 白亮. 基于预测误差修正的时序链路预测方法[J]. 电子与信息学报, 2014, 36(2): 325–331. doi: 10.3724/SP.J.1146.2013.00657

    DENG Zhihong, LAO Songyang, and BAI Liang. A temporal link prediction method based on link prediction error correction[J]. Journal of Electronics &Information Technology, 2014, 36(2): 325–331. doi: 10.3724/SP.J.1146.2013.00657
    [15]
    BLISS C A, FRANK M R, DANFORTH C M, et al. An evolutionary algorithm approach to link prediction in dynamic social networks[J]. Journal of Computational Science, 2014, 5(5): 750–764. doi: 10.1016/j.jocs.2014.01.003
    [16]
    CASADIEGO J, NITZAN M, HALLERBERG S, et al. Model-free inference of direct network interactions from nonlinear collective dynamics[J]. Nature Communications, 2017, 8(1): 2192. doi: 10.1038/s41467-017-02288-4
    [17]
    WANG Wenxu, LAI Yingcheng, and GREBOGI C. Data based identification and prediction of nonlinear and complex dynamical systems[J]. Physics Reports, 2016, 644: 1–76. doi: 10.1016/j.physrep.2016.06.004
    [18]
    HAN Xiao, SHEN Zhesi, WANG Wenxu, et al. Robust reconstruction of complex networks from sparse data[J]. Physical Review Letters, 2015, 114(2): 028701. doi: 10.1103/PhysRevLett.114.028701
    [19]
    尹赢, 张建朋, 吉立新, 等. 基于霍克斯点过程的动态网络表示学习方法[J]. 电子学报, 2020, 48(11): 2154–2161. doi: 10.3969/j.issn.0372-2112.2020.11.009

    YIN Ying, ZHANG Jianpeng, JI Lixin, et al. Dynamic network representation learning based on Hawkes point process[J]. Acta Electronica Sinica, 2020, 48(11): 2154–2161. doi: 10.3969/j.issn.0372-2112.2020.11.009
    [20]
    LÜ Linyuan and ZHOU Tao. Link prediction in complex networks: A survey[J]. Physica A:Statistical Mechanics and its Applications, 2011, 390(6): 1150–1170. doi: 10.1016/j.physa.2010.11.027
    [21]
    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Extended resource allocation index for link prediction of complex network[J]. Physica A:Statistical Mechanics and its Applications, 2017, 479: 174–183. doi: 10.1016/j.physa.2017.02.078
    [22]
    TANG Jian, QU Meng, WANG Mingzhe, et al. LINE: Large-scale information network embedding[C]. The 24th International Conference on World Wide Web, Florence, Italy, 2015: 1067–1077. doi: 10.1145/2736277.2741093.
    [23]
    LESKOVEC J, KLEINBERG J, and FALOUTSOS C. Graph evolution: Densification and shrinking diameters[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 2–es. doi: 10.1145/1217299.1217301
    [24]
    LESKOVEC J, LANG K J, DASGUPTA A, et al. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters[J]. Internet Mathematics, 2009, 6(1): 29–123. doi: 10.1080/15427951.2009.10129177
    [25]
    VISWANATH B, MISLOVE A, CHA M, et al. On the evolution of user interaction in Facebook[J]. Proceedings of the ACM Workshop on Online Social Networks, 2009, 39(4): 37–42.
    [26]
    KUNEGIS J. Konect: The Koblenz network collection[C]. Companion: The 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 2013: 1343–1350.
    [27]
    PANZARASA P, OPSAHL T, and CARLEY K M. Patterns and dynamics of users’ behavior and interaction: Network analysis of an online community[J]. Journal of the American Society for Information Science and Technology, 2009, 60(5): 911–932. doi: 10.1002/asi.21015
    [28]
    LESKOVEC J and KREVL A. SNAP datasets: Stanford large network dataset collection[DB/OL]. http://snap.stanford.edu/data/, 2018.
    [29]
    IBRAHIM N M A and CHEN Ling. Link prediction in dynamic social networks by integrating different types of information[J]. Applied Intelligence, 2015, 42(4): 738–750. doi: 10.1007/s10489-014-0631-0
    [30]
    李聪, 季新生, 李海涛, 等. 一种基于节点匹配度的动态网络链路预测方法[J]. 网络与信息安全学报, 2020, 5(4): 325–331. doi: 10.11959/j.issn.2096-109x.2019xxx

    LI Cong, JI Xinsheng, LI Haitao, et al. A link prediction method for dynamic networks based on matching degree of nodes[J]. Chinese Journal of Network and Information Security, 2020, 5(4): 325–331. doi: 10.11959/j.issn.2096-109x.2019xxx
    [31]
    SANKAR A, WU Yanhong, GOU Liang, et al. DySAT: Deep neural representation learning on dynamic graphs via self-attention networks[C]. The 13th International Conference on Web Search and Data Mining, Houston, USA, 2020: 519–527.
    [32]
    LI Jinsong, PENG Jianhua, LIU Shuxin, et al. TSAM: Temporal link prediction in directed networks based on self-attention mechanism[EB/OL]. arXiv: 2008.10021, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (897) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return