Citation: | WANG Bo, LI Mengxiang, LIU Xia. Ultrasound Image Segmentation Method of Thyroid Nodules Based on the Improved U-Net Network[J]. Journal of Electronics & Information Technology, 2022, 44(2): 514-522. doi: 10.11999/JEIT210015 |
[1] |
HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1–133. doi: 10.1089/thy.2015.0020
|
[2] |
MAROULIS D E, SAVELONAS M A, IAKOVIDIS D K, et al. Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images[J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(5): 537–543. doi: 10.1109/TITB.2006.890018
|
[3] |
SAVELONAS M A, IAKOVIDIS D K, LEGAKIS I, et al. Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(4): 519–527. doi: 10.1109/TITB.2008.2007192
|
[4] |
邵蒙恩, 严加勇, 崔崤峣, 等. 基于CV-RSF模型的甲状腺结节超声图像分割算法[J]. 生物医学工程研究, 2019, 38(3): 336–340. doi: 10.19529/j.cnki.1672-6278.2019.03.15
SHAO Meng’en, YAN Jiayong, CUI Xiaoyao, et al. Ultrasound image segmentation of thyroid nodule based on CV-RSF algorithm[J]. Journal of Biomedical Engineering Research, 2019, 38(3): 336–340. doi: 10.19529/j.cnki.1672-6278.2019.03.15
|
[5] |
ZHAO Jie, ZHENG Wei, ZHANG Li, et al. Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology[J]. Health Information Science and Systems, 2013, 1: 5. doi: 10.1186/2047-2501-1-5
|
[6] |
ALRUBAIDI W M H, PENG Bo, YANG Yan, et al. An interactive segmentation algorithm for thyroid nodules in ultrasound images[C]. The 12th International Conference on Intelligent Computing, Lanzhou, China, 2016: 107–115. doi: 10.1007/978-3-319-42297-8_11.
|
[7] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
[8] |
CHAN T F and VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266–277. doi: 10.1109/83.902291
|
[9] |
LI Chunming, KAO C Y, GORE J C, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940–1949. doi: 10.1109/TIP.2008.2002304
|
[10] |
DING Jianrui, HUANG Zichen, SHI Mengdie, et al. Automatic thyroid ultrasound image segmentation based on u-shaped network[C]. The 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Suzhou, China, 2019: 1–5. doi: 10.1109/CISP-BMEI48845.2019.8966062.
|
[11] |
WANG Jianrong, ZHANG Ruixuan, WEI Xi, et al. An attention-based semi-supervised neural network for thyroid nodules segmentation[C]. 2019 IEEE International Conference on Bioinformatics and Biomedicine, San Diego, USA, 2019: 871–876. doi: 10.1109/BIBM47256.2019.8983288.
|
[12] |
WU Yating, SHEN Xueliang, BU Feng, et al. Ultrasound image segmentation method for thyroid nodules using ASPP fusion features[J]. IEEE Access, 2020, 8: 172457–172466. doi: 10.1109/ACCESS.2020.3022249
|
[13] |
ABDOLALI F, KAPUR J, JAREMKO J L, et al. Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks[J]. Computers in Biology and Medicine, 2020, 122: 103871. doi: 10.1016/j.compbiomed.2020.103871
|
[14] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning where to look for the pancreas[J]. arXiv preprint arXiv: 1804.03999, 2018.
|
[15] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
[16] |
FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3146–3154. doi: 10.1109/CVPR.2019.00326.
|
[17] |
LEE H J, KIM J U, LEE S, et al. Structure boundary preserving segmentation for medical image with ambiguous boundary[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4817–4826. doi: 10.1109/CVPR42600.2020.00487.
|
[18] |
ZHONG Zilong, LIN Zhongqiu, BIDART R, et al. Squeeze-and-attention networks for semantic segmentation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13065–13074. doi: 10.1109/CVPR42600.2020.01308.
|
[19] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[J]. arXiv preprint arXiv: 1602.07261, 2016.
|
[20] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: 1412.6980, 2017.
|
[21] |
AZAD R, ASADI-AGHBOLAGHI M, FATHY M, et al. Attention deeplabv3+: Multi-level context attention mechanism for skin lesion segmentation[C]. The European Conference on Computer Vision, Glasgow, UK, 2020. doi: 10.1007/978-3-030-66415-2_16.
|
[22] |
AZAD R, ASADI-AGHBOLAGHI M, FATHY M, et al. Bi-directional ConvLSTM U-Net with densley connected convolutions[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, Korea (South), 2019: 406–415, doi: 10.1109/ICCVW.2019.00052.
|
[23] |
ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation[C]. The 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 2018: 3–11. doi: 10.1007/978-3-030-00889-5_1.
|
[24] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/cvpr.2018.00745.
|