Citation: | WANG Dan, TIAN Guangqiang, WANG Fuzhong. Probabilistic Matrix Factorization Recommendation Model Incorporating Multiple Weighting Factors[J]. Journal of Electronics & Information Technology, 2022, 44(2): 552-565. doi: 10.11999/JEIT210011 |
[1] |
CUI Zhihua, XU Xianghua, XUE Fei, et al. Personalized recommendation system based on collaborative filtering for IoT scenarios[J]. IEEE Transactions on Services Computing, 2020, 13(4): 685–695. doi: 10.1109/TSC.2020.2964552
|
[2] |
LI Shugang, SONG Xuewei, LU Hanyu, et al. Friend recommendation for cross marketing in online brand community based on intelligent attention allocation link prediction algorithm[J]. Expert Systems with Applications, 2020, 139: 112839. doi: 10.1016/j.eswa.2019.112839
|
[3] |
AHMADIAN S, AFSHARCHI M, and MEGHDADI M. A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems[J]. Multimedia Tools and Applications, 2019, 78(13): 17763–17798. doi: 10.1007/s11042-018-7079-x
|
[4] |
GUO Guibing, ZHANG Jie, and YORKE-SMITH N. A novel recommendation model regularized with user trust and item ratings[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(7): 1607–1620. doi: 10.1109/TKDE.2016.2528249
|
[5] |
WANG Ximeng, LIU Yun, ZHANG Guangquan, et al. Diffusion-based recommendation with trust relations on tripartite graphs[J]. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017(8): 083405. doi: 10.1088/1742-5468/aa8189
|
[6] |
PAPNEJA S, SHARMA K, and KHILWANI N. Context aware personalized content recommendation using ontology based spreading activation[J]. International Journal of Information Technology, 2018, 10(2): 133–138. doi: 10.1007/s41870-017-0052-5
|
[7] |
CHEN Lingjiao and GAO Jian. A trust-based recommendation method using network diffusion processes[J]. Physica A: Statistical Mechanics and its Applications, 2018, 506: 679–691. doi: 10.1016/j.physa.2018.04.089
|
[8] |
GUAN Jiansheng, XU Min, and KONG Xiangsong. Learning social regularized user representation in recommender system[J]. Signal Processing, 2018, 144: 306–310. doi: 10.1016/j.sigpro.2017.09.015
|
[9] |
AGHDAM M H. Context-aware recommender systems using hierarchical hidden Markov model[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 518: 89–98. doi: 10.1016/j.physa.2018.11.037
|
[10] |
YAO Weilong, HE Jing, HUANG Guangyan, et al. Modeling dual role preferences for trust-aware recommendation[C]. The 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Queensland, Australia, 2014: 975–978.
|
[11] |
WANG Xin, WANG Ying, and SUN Hongbin. Exploring the combination of dempster-shafer theory and neural network for predicting trust and distrust[J]. Computational Intelligence and Neuroscience, 2016, 2016: 5403105.
|
[12] |
余永红, 高阳, 王皓, 等. 融合用户社会地位和矩阵分解的推荐算法[J]. 计算机研究与发展, 2018, 55(1): 113–124. doi: 10.7544/issn1000-1239.2018.20160704
YU Yonghong, GAO Yang, WANG Hao, et al. Integrating user social status and matrix factorization for item recommendation[J]. Journal of Computer Research and Development, 2018, 55(1): 113–124. doi: 10.7544/issn1000-1239.2018.20160704
|
[13] |
王英, 王鑫, 左万利. 基于社会学理论的信任关系预测模型[J]. 软件学报, 2014, 25(12): 2893–2904.
WANG Ying, WANG Xin, and ZUO Wanli. Trust prediction modeling based on social theories[J]. Journal of Software, 2014, 25(12): 2893–2904.
|
[14] |
ZHENG Xiaoyao, LUO Yonglong, SUN Liping, et al. A novel social network hybrid recommender system based on hypergraph topologic structure[J]. World Wide Web, 2018, 21(4): 985–1013. doi: 10.1007/s11280-017-0494-5
|
[15] |
TANG Jiliang, GAO Huiji, and LIU Huan. mTrust: discerning multi-faceted trust in a connected world[C]. The Fifth ACM International Conference on Web Search and Data Mining, Washington, USA, 2012: 93–102.
|
[16] |
GAO Honghao, KUANG Li, YIN Yuyu, et al. Mining consuming behaviors with temporal evolution for personalized recommendation in mobile marketing apps[J]. Mobile Networks and Applications, 2020, 25(4): 1233–1248. doi: 10.1007/s11036-020-01535-1
|
[17] |
LI Yangyang, WANG Dong, HE Haiyang, et al. Mining intrinsic information by matrix factorization-based approaches for collaborative filtering in recommender systems[J]. Neurocomputing, 2017, 249: 48–63. doi: 10.1016/j.neucom.2017.03.002
|
[18] |
CHEN Yan, DAI Yongfang, HAN Xiulong, et al. Dig users’ intentions via attention flow network for personalized recommendation[J]. Information Sciences, 2021, 547: 1122–1135. doi: 10.1016/j.ins.2020.09.007
|
[19] |
LI Jun, CHEN Chaochao, CHEN Huiling, et al. Towards context-aware social recommendation via individual trust[J]. Knowledge-Based Systems, 2017, 127: 58–66. doi: 10.1016/j.knosys.2017.02.032
|
[20] |
BI Jianwu, LIU Yang, FAN Zhiping. A deep neural networks based recommendation algorithm using user and item basic data[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(4): 763–777. doi: 10.1007/s13042-019-00981-y
|
[21] |
LUO Xin, ZHOU Mengchu, XIA Yunni, et al. An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1273–1284. doi: 10.1109/TII.2014.2308433
|
[22] |
SALAKHUTDINOV R and MNIH A. Probabilistic matrix factorization[C]. The 20th International Conference on Neural Information Processing Systems, Red Hook, USA, 2007: 1257–1264.
|
[23] |
DA’U A, SALIM N, RABIU I, et al. Weighted aspect-based opinion mining using deep learning for recommender system[J]. Expert Systems with Applications, 2020, 140: 112871. doi: 10.1016/j.eswa.2019.112871
|
[24] |
JAWARNEH I M A, BELLAVISTA P, CORRADI A, et al. A pre-filtering approach for incorporating contextual information into deep learning based recommender systems[J]. IEEE Access, 2020, 8: 40485–40498. doi: 10.1109/ACCESS.2020.2975167
|
[25] |
BATHLA G, AGGARWAL H, and RANI R. AutoTrustRec: recommender system with social trust and deep learning using AutoEncoder[J]. Multimedia Tools and Applications, 2020, 79(29): 20845–20860.
|