| Citation: | Yingjian YAN, Conghui ZHAO, Yanjiang LIU. Hardware Trojan Detection Based on Multiple Structural Features[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2128-2139. doi: 10.11999/JEIT210003 | 
 
	                | [1] | LIU Yanjiang, HE Jiaji, MA Haocheng, et al. Golden chip free Trojan detection leveraging probabilistic neural network with genetic algorithm applied in the training phase[J]. Science China Information Sciences, 2020, 63(2): 129401. doi:  10.1007/s11432-019-9803-8 | 
| [2] | 张伟, 冯建华. IP保护方法研究进展[J]. 微纳电子与智能制造, 2020, 2(1): 95–101. doi:  10.19816/j.cnki.10-1594/tn.2020.01.095 ZHANG Wei and FENG Jianhua. Research progress on IP protection techniques[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2020, 2(1): 95–101. doi:  10.19816/j.cnki.10-1594/tn.2020.01.095 | 
| [3] | OYA M, SHI Youhua, YANAGISAWA M, et al. A score-based classification method for identifying hardware-Trojans at gate-level netlists[C]. 2015 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2015: 465–470. doi: 10.7873/DATE.2015.0352. | 
| [4] | YAO Song, CHEN Xiaoming, ZHANG Jie, et al. FASTrust: Feature analysis for third-party IP trust verification[C]. 2015 IEEE International Test Conference, Anaheim, USA, 2015: 1–10. doi: 10.1109/TEST.2015.7342417. | 
| [5] | HASEGAWA K, OYA M, YANAGISAWA M, et al. Hardware Trojans classification for gate-level netlists based on machine learning[C]. The 22nd IEEE International Symposium on On-Line Testing and Robust System Design, Sant Feliu de Guixols, Spain, 2016: 203–206. doi: 10.1109/IOLTS.2016.7604700. | 
| [6] | CHEN Fuqiang and LIU Qiang. Single-triggered hardware Trojan identification based on gate-level circuit structural characteristics[C]. 2017 IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017: 1–4. doi: 10.1109/ISCAS.2017.8050673. | 
| [7] | LI Chensheng, QIN Xiaowei, XU Xiaodong, et al. Scalable graph convolutional networks with fast localized spectral filter for directed graphs[J]. IEEE Access, 2020, 8: 105634–105644. doi:  10.1109/ACCESS.2020.2999520 | 
| [8] | SAADATNIAKI F, XIN Ran, and KHAN U A. Decentralized optimization over time-varying directed graphs with row and column-stochastic matrices[J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4769–4780. doi:  10.1109/TAC.2020.2969721 | 
| [9] | 薛春艳. 基于邻接表结构的拓扑排序的全序列算法研究[J]. 现代计算机, 2016(19): 74–76. doi:  10.3969/j.issn.1007-1423.2016.19.018 XUE Chunyan. Research on the algorithm for all topology sorting based on adjacency list structure[J]. Modern Computer, 2016(19): 74–76. doi:  10.3969/j.issn.1007-1423.2016.19.018 | 
| [10] | Trust-HUB. Chip-level Trojan benchmarks[EB/OL]. https://www.trust-hub.org/benchmarks/chip-level-trojan.2020.09. | 
| [11] | MANJU B R and NAIR A R. Classification of cardiac arrhythmia of 12 lead ECG using combination of SMOTEENN, XGBoost and machine learning algorithms[C]. The 9th International Symposium on Embedded Computing and System Design, Kollam, India, 2019: 1–7. doi: 10.1109/ISED48680.2019.9096244. | 
| [12] | 刘东启. 基于支持向量机的不平衡数据分类算法研究[D]. [硕士论文], 浙江大学, 2017. LIU Dongqi. Support vector machine based classification algorithms research for imbalanced data[D]. [Master dissertation], Zhejiang University, 2017. | 
| [13] | 张剑飞, 王真, 崔文升, 等. 一种基于SVM的不平衡数据分类方法研究[J]. 东北师大学报: 自然科学版, 2020, 52(3): 96–104. doi:  10.16163/j.cnki.22-1123/n.2020.03.014 ZHANG Jianfei, WANG Zhen, CUI Wensheng, et al. Research on an unbalanced data classification method based on SVM[J]. Journal of Northeast Normal University:Natural Science Edition, 2020, 52(3): 96–104. doi:  10.16163/j.cnki.22-1123/n.2020.03.014 | 
| [14] | KOK C H, OOI C Y, MOGHBEL M, et al. Classification of Trojan nets based on SCOAP values using supervised learning[C]. 2019 IEEE International Symposium on Circuits and Systems, Sapporo, Japan, 2019: 1–5. doi: 10.1109/ISCAS.2019.8702462. | 
| [15] | 魏建安, 黄海松, 康佩栋. 针对不平衡数据的PSO-DEC-IFSVM分类算法[J]. 数据采集与处理, 2019, 34(4): 723–735. doi:  10.16337/j.1004-9037.2019.04.018 WEI Jian’an, HUANG Haisong, and KANG Peidong. PSO-DEC-IFSVM classification algorithm for unbalanced data[J]. Journal of Data Acquisition &Processing, 2019, 34(4): 723–735. doi:  10.16337/j.1004-9037.2019.04.018 | 
| [16] | HASEGAWA K, YANAGISAWA M, and TOGAWA N. Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier[C]. 2017 IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017: 1–4. doi: 10.1109/ISCAS.2017.8050827. | 
| [17] | 高良俊, 于金星, 陈鑫, 等. 基于特征提取和SVM的硬件木马检测方法[J]. 微电子学, 2020, 50(6): 914–919. doi:  10.13911/j.cnki.1004-3365.200034 GAO Liangjun, YU Jinxing, CHEN Xin, et al. Hardware Trojan detection method based on feature extraction and SVM[J]. Microelectronics, 2020, 50(6): 914–919. doi:  10.13911/j.cnki.1004-3365.200034 | 
