Citation: | KUANG Junqian, ZHAO Chang, YANG Liu, WANG Haifeng, QIAN Hua. An Outlier Cleaning Algorithm Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(2): 507-513. doi: 10.11999/JEIT201097 |
[1] |
蒋俊正, 杨杰, 欧阳缮. 一种新的无线传感器网络中异常节点检测定位算法[J]. 电子与信息学报, 2018, 40(10): 2358–2364. doi: 10.11999/JEIT171207
JIANG Junzheng, YANG Jie, and OUYANG Shan. Novel method for outlier nodes detection and localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2358–2364. doi: 10.11999/JEIT171207
|
[2] |
郭志懋, 周傲英. 数据质量和数据清洗研究综述[J]. 软件学报, 2002, 13(11): 2076–2082.
GUO Zhimao and ZHOU Aoying. Research on data quality and data cleaning: A survey[J]. Journal of Software, 2002, 13(11): 2076–2082.
|
[3] |
YU Tianqi, WANG Xianbin, and SHAMI A. Recursive principal component analysis-based data outlier detection and sensor data aggregation in IoT systems[J]. IEEE Internet of Things Journal, 2017, 4(6): 2207–2216. doi: 10.1109/JIOT.2017.2756025
|
[4] |
KUMAR V and KHOSLA C. Data cleaning-a thorough analysis and survey on unstructured data[C]. The 8th International Conference on Cloud Computing, Data Science & Engineering, Noida, India, 2018: 305–309.
|
[5] |
DIAO Yinglong, LIU Keyan, MENG Xiaoli, et al. A big data online cleaning algorithm based on dynamic outlier detection[C]. 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Xi'an, China, 2015: 230–234.
|
[6] |
田江, 顾宏. 孤立点一类支持向量机算法研究[J]. 电子与信息学报, 2010, 32(6): 1284–1288. doi: 10.3724/SP.J.1146.2009.00861
TIAN Jiang and GU Hong. Outlier one class support vector machines[J]. Journal of Electronics &Information Technology, 2010, 32(6): 1284–1288. doi: 10.3724/SP.J.1146.2009.00861
|
[7] |
ZOU Zhuping, XIE Yulai, HUANG Kai, et al. A docker container anomaly monitoring system based on optimized isolation forest[J]. IEEE Transactions on Cloud Computing, To be published. doi: 10.1109/TCC.2019.2935724.
|
[8] |
ZHOU Zihan, LI Xiaodong, WRIGHT J, et al. Stable principal component pursuit[C]. 2010 IEEE International Symposium on Information Theory, Austin, USA, 2010: 1518–1522.
|
[9] |
XU Yichu, DU Bo, ZHANG Liangpei, et al. A low-rank and sparse matrix decomposition-based dictionary reconstruction and anomaly extraction framework for hyperspectral anomaly detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1248–1252. doi: 10.1109/LGRS.2019.2943861
|
[10] |
DAUBECHIES I, DEFRISE M, and DE MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413–1457. doi: 10.1002/cpa.20042
|
[11] |
BIOUCAS-DIAS J M and FIGUEIREDO M A T. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992–3004. doi: 10.1109/TIP.2007.909319
|
[12] |
CANDES E J, WAKIN M B, and BOYD S. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877–905.
|
[13] |
ELAD M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[M]. New York: Springer, 2010: 185–200.
|
[14] |
CHENG Jie, YE Qiang, JIANG Hongbo, et al. STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 850–861. doi: 10.1109/TWC.2012.121412.120148
|
[15] |
李鹏, 王建新, 曹建农. 无线传感器网络中基于压缩感知和GM(1, 1)的异常检测方案[J]. 电子与信息学报, 2015, 37(7): 1586–1590. doi: 10.11999/JEIT141219
LI Peng, WANG Jianxin, and CAO Jiannong. Abnormal event detection scheme based on compressive sensing and GM (1, 1) in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2015, 37(7): 1586–1590. doi: 10.11999/JEIT141219
|
[16] |
LIU Jing and RAO B D. Robust PCA via ℓ0-ℓ1 regularization[J]. IEEE Transactions on Signal Processing, 2019, 67(2): 535–549. doi: 10.1109/TSP.2018.2883924
|
[17] |
RAHMANI M and ATIA G K. High dimensional low rank plus sparse matrix decomposition[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 2004–2019. doi: 10.1109/TSP.2017.2649482
|
[18] |
ORTIZ-RODRIGUEZ J M and VEGA-CARRILLO H R. A neutron spectra unfolding code, based on iterative procedures, designed under LabVIEW environment[C]. 2012 IEEE Ninth Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Mexico, 2012: 315–319.
|
[19] |
GIRYES R, ELDAR Y C, BRONSTEIN A M, et al. Tradeoffs between convergence speed and reconstruction accuracy in inverse problems[J]. IEEE Transactions on Signal Processing, 2018, 66(7): 1676–1690. doi: 10.1109/TSP.2018.2791945
|
[20] |
YANG Yang, SUN Jian, LI Huibin, et al. ADMM-CSNet: A deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521–538. doi: 10.1109/TPAMI.2018.2883941
|
[21] |
CHEN Yunjin, WEI Yu, and POCK T. On learning optimized reaction diffusion processes for effective image restoration[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5261–5269.
|
[22] |
SOLOMON O, COHEN R, ZHANG Yi, et al. Deep unfolded robust PCA with application to clutter suppression in ultrasound[J]. IEEE Transactions on Medical Imaging, 2020, 39(4): 1051–1063. doi: 10.1109/TMI.2019.2941271
|
[23] |
Intel Berkeley Research Lab. Intel lab data[EB/OL]. http://db.lcs.mit.edu/labdata/labdata.html, 2019.
|
[24] |
苏凤阁. 大纳伦河流域修正后的温度和降水数据集(1951–2016)[R]. 国家青藏高原科学数据中心, 2019. doi: 10.11888/Hydro.tpdc.270216.
SU Fengge. Revised dataset of temperature and precipitation in the Greater Naren River Basin (1951–2016)[R]. National Tibetan Plateau Data Center, 2019. doi: 10.11888/Hydro.tpdc.270216.
|