Citation: | Manli WANG, Fengying MA, Changsen ZHANG. Mixed Noise Suppression Algorithm Based on Developable Local Surface of Image[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3291-3300. doi: 10.11999/JEIT201096 |
[1] |
张强. 基于BM3D的彩色图像混合噪声滤波算法研究[D]. [硕士论文], 吉林大学, 2019.
ZHANG Qiang. Mixed noise filtering algorithm for color images based on BM3D[D]. [Master dissertation], Jilin University, 2019.
|
[2] |
YIN Xiangrui, ZHAO Qianlong, LIU Jin, et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(12): 2903–2913. doi: 10.1109/TMI.2019.2917258
|
[3] |
LIU Jin, HU Yining, YANG Jian, et al. 3D feature constrained reconstruction for low-dose CT imaging[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(5): 1232–1247. doi: 10.1109/TCSVT.2016.2643009
|
[4] |
CHEN Yang, SHI Luyao, FENG Qianjing, et al. Artifact suppressed dictionary learning for low-dose CT image processing[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2271–2292. doi: 10.1109/TMI.2014.2336860
|
[5] |
FAN Haiyan, LI Chang, GUO Yulan, et al. Spatial–spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6196–6213. doi: 10.1109/TGRS.2018.2833473
|
[6] |
ABAZARI R and LAKESTANI M. A hybrid denoising algorithm based on shearlet transform method and yaroslavsky’s filter[J]. Multimedia Tools and Applications, 2018, 77(14): 17829–17851. doi: 10.1007/s11042-018-5648-7
|
[7] |
SHAHDOOSTI H R and KHAYAT O. Image denoising using sparse representation classification and non-subsampled shearlet transform[J]. Signal, Image and Video Processing, 2016, 10(6): 1081–1087. doi: 10.1007/s11760-016-0862-0
|
[8] |
ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891
|
[9] |
ZHANG Jing, SANG Liu, WAN Zekang, et al. Deep convolutional neural network based on multi-scale feature extraction for image denoising[C]. The IEEE International Conference on Visual Communications and Image Processing (VCIP), Macau, China, 2020: 213–216. doi: 10.1109/VCIP49819.2020.9301843.
|
[10] |
RAFIQUE H. Simulation of harmonic analysis, synthesis and Gibbs effect of periodic signals[C]. The 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey, 2019: 282–287. doi: 10.1109/SSD.2019.8893281.
|
[11] |
LI Wenhao, JIA Tong, CHEN Qiusheng, et al. Omnidirectional ring structured light noise filtering based on DCGAN network and autoencode[C]. The International Conference on Culture-oriented Science & Technology (ICCST), Beijing, China, 2020: 452–456. doi: 10.1109/ICCST50977.2020.00093.
|
[12] |
GONG Yuanhao and SBALZARINI I F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1786–1798. doi: 10.1109/TIP.2017.2658954
|
[13] |
王满利, 田子建, 桂伟峰, 等. 基于高斯曲率优化和非下采样剪切波变换的高密度混合噪声去除算法[J]. 光子学报, 2019, 48(9): 0910003. doi: 10.3788/gzxb20194809.0910003
WANG Manli, TIAN Zijian, GUI Weifeng, et al. High density mixed noise removal algorithm based on gaussian curvature optimization and non-subsampled shearlet transform[J]. Acta Photonica Sinica, 2019, 48(9): 0910003. doi: 10.3788/gzxb20194809.0910003
|
[14] |
王满利, 田子建, 张元刚. 曲率差分驱动的极小曲面滤波器[J]. 电子与信息学报, 2020, 42(3): 764–771. doi: 10.11999/JEIT190216
WANG Manli, TIAN Zijian, and ZHANG Yuangang. Minimal surface filter driven by curvature difference[J]. Journal of Electronics &Information Technology, 2020, 42(3): 764–771. doi: 10.11999/JEIT190216
|
[15] |
汤成, 许建龙, 周志光. 改进的曲率滤波强噪声图像去噪方法[J]. 中国图象图形学报, 2019, 24(3): 346–356. doi: 10.11834/jig.180302
TANG Cheng, XU Jianlong, and ZHOU Zhiguang. Strong noise image-denoising algorithm based on improved curvature filters[J]. Journal of Image and Graphics, 2019, 24(3): 346–356. doi: 10.11834/jig.180302
|
[16] |
XU Zhiya, DAI Tao, NIU Li, et al. Sure-based dual domain image denoising[C]. The IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 1418–1422. doi: 10.1109/ICASSP.2018.8461324.
|
[17] |
KNAUS C and ZWICKER M. Dual-domain image denoising[C]. The IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 440–444. doi: 10.1109/ICIP.2013.6738091.
|
[18] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
|
[19] |
LIU Licheng, CHEN Long, CHEN C L P, et al. Weighted joint sparse representation for removing mixed noise in image[J]. IEEE Transactions on Cybernetics, 2017, 47(3): 600–611. doi: 10.1109/TCYB.2016.2521428
|
[20] |
LIU Yinghui, GAO Kun, and NI Guoqiang. An improved trilateral filter for Gaussian and impulse noise removal[C]. The 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, China, 2010: 385–388. doi: 10.1109/ICINDMA.2010.5538290.
|