Citation: | Jingyi BAO, Ning XU, Yunhao SHANG, Xin CHU. Optimization in Capsule Network Based on Mutual Information Autoencoder and Variational Routing[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3309-3318. doi: 10.11999/JEIT201094 |
[1] |
SABOUR S, FROSST N, and HINTON G E. Dynamic routing between capsules[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 3856–3866.
|
[2] |
HINTON G E, SABOUR S, and FROSST N. Matrix capsules with EM routing[C]. International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[3] |
GOLHANI K, BALASUNDRAM S K, VADAMALAI G, et al. A review of neural networks in plant disease detection using hyperspectral data[J]. Information Processing in Agriculture, 2018, 5(3): 354–371. doi: 10.1016/j.inpa.2018.05.002
|
[4] |
PAOLETTI M E, HAUT J M, FERNANDEZ-BELTRAN R, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2145–2160. doi: 10.1109/TGRS.2018.2871782
|
[5] |
CHU Xin, XU Ning, LIU Xiaofeng, et al. Research on capsule network optimization structure by variable route planning[C]. 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR), Irkutsk, Russia, 2019: 858–861.
|
[6] |
AUBERT G and VESE L. A variational method in image recovery[J]. SIAM Journal on Numerical Analysis, 1997, 34(5): 1948–1979. doi: 10.1137/S003614299529230X
|
[7] |
李速, 齐翔林, 胡宏, 等. 功能柱结构神经网络模型中的同步振荡现象[J]. 中国科学C辑, 2004, 34(4): 385–394. doi: 10.3321/j.issn:1006-9259.2004.04.012
|
[8] |
MOON T K. The expectation-maximization algorithm[J]. IEEE Signal Processing Magazine, 1996, 13(6): 47–60. doi: 10.1109/79.543975
|
[9] |
西广成. 基于平均场理论逼近的神经网络[J]. 电子学报, 1995(8): 62–64. doi: 10.3321/j.issn:0372-2112.1995.08.016
XI Guangcheng. Neural network based on mean-field theory approximation[J]. Acta Electronica Sinica, 1995(8): 62–64. doi: 10.3321/j.issn:0372-2112.1995.08.016
|
[10] |
BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006: 293–355.
|
[11] |
GÖRÜR D and RASMUSSEN C E. Dirichlet process Gaussian mixture models: Choice of the base distribution[J]. Journal of Computer Science and Technology, 2010, 25(4): 653–664. doi: 10.1007/s11390-010-9355-8
|
[12] |
SHRIBERG E, FERRER L, KAJAREKAR S, et al. Modeling prosodic feature sequences for speaker recognition[J]. Speech Communication, 2005, 46(3/4): 455–472.
|
[13] |
HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019: 1–24.
|
[14] |
BELGHAZI M I, RAJESWAR S, BARATIN A, et al. MINE: Mutual information neural estimation[J]. arXiv: 1801.04062, 2018: 531–540.
|
[15] |
徐峻岭, 周毓明, 陈林, 等. 基于互信息的无监督特征选择[J]. 计算机研究与发展, 2012, 49(2): 372–382.
XU Junling, ZHOU Yuming, CHEN Lin, et al. An unsupervised feature selection approach based on mutual information[J]. Journal of Computer Research and Development, 2012, 49(2): 372–382.
|
[16] |
姚志均, 刘俊涛, 周瑜, 等. 基于对称KL距离的相似性度量方法[J]. 华中科技大学学报: 自然科学版, 2011, 39(11): 1–4, 38.
YAO Zhijun, LIU Juntao, ZHOU Yu, et al. Similarity measure method using symmetric KL divergence[J]. Journal of Huazhong University of Science and Technology:Nature Science, 2011, 39(11): 1–4, 38.
|
[17] |
PATHAK D, KRÄHENBÜHL P, DONAHUE J, et al. Context encoders: Feature learning by inpainting[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2536–2544.
|
[18] |
KRIZHEVSKY A and HINTON G E. Learning multiple layers of features from tiny images[R]. Technical report, 2009.
|
[19] |
LECUN Y, CORTES C, and BURGES C J C. MNIST handwritten digit database. 2010[OL]. http://yann.lecun.com/exdb/mnist, 2010, 7: 23.
|
[20] |
XIAO H, RASUL K, and VOLLGRAF R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv: 1708.07747, 2017.
|
[21] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[22] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
|