Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Xiaolong LIU. Whale Optimization Algorithm for Multi-group with Information Exchange and Vertical and Horizontal Bidirectional Learning[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3247-3256. doi: 10.11999/JEIT201080
Citation: Xiaolong LIU. Whale Optimization Algorithm for Multi-group with Information Exchange and Vertical and Horizontal Bidirectional Learning[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3247-3256. doi: 10.11999/JEIT201080

Whale Optimization Algorithm for Multi-group with Information Exchange and Vertical and Horizontal Bidirectional Learning

doi: 10.11999/JEIT201080
Funds:  The Fundamental Research Funds for the Central University (XYZD201911)
  • Received Date: 2020-12-25
  • Rev Recd Date: 2021-03-12
  • Available Online: 2021-03-24
  • Publish Date: 2021-11-23
  • Compared with traditional swarm intelligence optimization algorithms, the Whale Optimization Algorithm(WOA) has better optimization capabilities and robustness, but there are still problems such as limited global optimization capabilities and difficulty in jumping out of local extremes. Considering the above-mentioned imbalance problem, a multi-group population division idea with vertical and horizontal bidirectional learning is proposed. The subgroups are independent of each other, and the individuals in the subgroups are affected by the optimal values from both the horizontal and vertical directions, thereby avoiding the local optimal and getting the balance between exploration and development.For all individuals in the vertical population, an individual replacement strategy with linearly decreasing probability is proposed to promote the information flow of different subgroups and accelerate the algorithm convergence.The selection of strategy operators is based on the historical evolution information of different individuals, which is different from the existing strategy operator selection methods based on random numbers.The benchmark function is used for cross-document comparison. The numerical results show that the algorithm in this thesis has good superiority and stability. It obtains global extreme on most problems and has good problem applicability.
  • loading
  • [1]
    刘小龙. 改进多元宇宙算法求解大规模实值优化问题[J]. 电子与信息学报, 2019, 41(7): 1666–1673. doi: 10.11999/JEIT180751

    LIU Xiaolong. Application of improved multiverse algorithm to large scale optimization problems[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1666–1673. doi: 10.11999/JEIT180751
    [2]
    MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
    [3]
    MAFARJA M M and MIRJALILI S. Hybrid whale optimization algorithm with simulated annealing for feature selection[J]. Neurocomputing, 2017, 260: 302–312. doi: 10.1016/j.neucom.2017.04.053
    [4]
    ABDEL-BASSET M, MANOGARAN G, EL-SHAHAT D, et al. A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem[J]. Future Generation Computer Systems, 2018, 85: 129–145. doi: 10.1016/j.future.2018.03.020
    [5]
    XIONG Guojiang, ZHANG Jing, SHI Dongyuan, et al. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm[J]. Energy Conversion and Management, 2018, 174: 388–405. doi: 10.1016/j.enconman.2018.08.053
    [6]
    CHEN Huiling, XU Yueting, WANG Mingjing, et al. A balanced whale optimization algorithm for constrained engineering design problems[J]. Applied Mathematical Modelling, 2019, 71: 45–59. doi: 10.1016/j.apm.2019.02.004
    [7]
    MAHDAD B. Improvement optimal power flow solution under loading margin stability using new partitioning whale algorithm[J]. International Journal of Management Science and Engineering Management, 2019, 14(1): 64–77. doi: 10.1080/17509653.2018.1488225
    [8]
    吴书强, 栾飞. 基于改进型鲸鱼算法的云制造资源配置研究[J]. 制造业自动化, 2019, 41(12): 95–98, 124.

    WU Shuqiang and LUAN Fei. Optimal allocation method for cloud manufacturing resource based on improved whale optimization algorithm[J]. Manufacturing Automation, 2019, 41(12): 95–98, 124.
    [9]
    孙琪, 于永进, 王玉彬, 等. 采用改进鲸鱼算法的配电网综合优化[J/OL]. 电力系统及其自动化学报. 2021, 30(5): 22–29. doi:10.19635/j.cnki.csu-epsa.000553.

    SUN Qi, YU Yongjin, WANG Yubin, et al. Comprehensive optimization of distribution network with improved whale algorithm[J/OL]. The CSU-EPSA. 2021, 30(5): 22–29. doi:10.19635/j.cnki.csu-epsa.000553.
    [10]
    吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(S2): 724286. doi: 10.7527/S1000-6893.2020.24286

    WU Kun and TAN Shaochang. Path planning of UAVs based on improved whale optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724286. doi: 10.7527/S1000-6893.2020.24286
    [11]
    SUN Yongjun, WANG Xilu, CHEN Yahuan, et al. A modified whale optimization algorithm for large-scale global optimization problems[J]. Expert Systems With Applications, 2018, 114: 563–577. doi: 10.1016/j.eswa.2018.08.027
    [12]
    龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法[J]. 系统工程理论与实践, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12

    LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory &Practice, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12
    [13]
    褚鼎立, 陈红, 王旭光. 基于自适应权重和模拟退火的鲸鱼优化算法[J]. 电子学报, 2019, 47(5): 992–999. doi: 10.3969/j.issn.0372-2112.2019.05.003

    CHU Dingli, CHEN Hong, and WANG Xuguang. Whale optimization algorithm based on adaptive weight and simulated annealing[J]. Acta Electronica Sinica, 2019, 47(5): 992–999. doi: 10.3969/j.issn.0372-2112.2019.05.003
    [14]
    王坚浩, 张亮, 史超, 等. 基于混沌搜索策略的鲸鱼优化算法[J]. 控制与决策, 2019, 34(9): 1893–1900. doi: 10.13195/j.kzyjc.2018.0098

    WANG Jianhao, ZHANG Liang, SHI Chao, et al. Whale optimization algorithm based on chaotic search strategy[J]. Control and Decision, 2019, 34(9): 1893–1900. doi: 10.13195/j.kzyjc.2018.0098
    [15]
    肖子雅, 刘升. 精英反向黄金正弦鲸鱼算法及其工程优化研究[J]. 电子学报, 2019, 47(10): 2177–2186. doi: 10.3969/j.issn.0372-2112.2019.10.020

    XIAO Ziya and LIU Sheng. Study on elite opposition-based golden-sine whale optimization algorithm and its application of project optimization[J]. Acta Electronica Sinica, 2019, 47(10): 2177–2186. doi: 10.3969/j.issn.0372-2112.2019.10.020
    [16]
    吴泽忠, 宋菲. 基于改进螺旋更新位置模型的鲸鱼优化算法[J]. 系统工程理论与实践, 2019, 39(11): 2928–2944. doi: 10.12011/1000-6788-2018-2156-17

    WU Zezhong and SONG Fei. Whale optimization algorithm based on improved spiral update position model[J]. Systems Engineering-Theory &Practice, 2019, 39(11): 2928–2944. doi: 10.12011/1000-6788-2018-2156-17
    [17]
    张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173–1180. doi: 10.3195/j.kzyjc.2019.1362

    ZHANG Damin, XU Hang, WANG Yirou, et al. Whale optimization algorithm for embedded circle mapping and one dimensional oppositional learning based small hole imaging[J]. Control and Decision, 2021, 36(5): 1173–1180. doi: 10.3195/j.kzyjc.2019.1362
    [18]
    刘景森, 马义想, 李煜. 改进鲸鱼算法求解工程设计优化问题[J]. 计算机集成制造系统, 2021, 27(7): 1884–1897. doi: 10.13196/j.cims.2021.07.004

    LIU Jingsen, MA Yixiang, and LI Yu. Improved whale algorithm for solving engineering design optimization problems[J]. Computer Integrated Manufacturing Systems, 2021, 27(7): 1884–1897. doi: 10.13196/j.cims.2021.07.004
    [19]
    黄清宝, 李俊兴, 宋春宁, 等. 基于余弦控制因子和多项式变异的鲸鱼优化算法[J]. 控制与决策, 2020, 35(3): 559–568. doi: 10.13195/j.kzyjc.2018.0463

    HUANG Qingbao, LI Junxing, SONG Chunning, et al. Whale optimization algorithm based on cosine control factor and polynomial mutation[J]. Control and Decision, 2020, 35(3): 559–568. doi: 10.13195/j.kzyjc.2018.0463
    [20]
    黄飞, 吴泽忠. 基于阈值控制的一种改进鲸鱼算法[J]. 系统工程, 2020, 38(2): 133–148.

    HUNAG Fei and WU Zezhong. An improved whale optimization algorithm based on threshold control[J]. Systems Engineering, 2020, 38(2): 133–148.
    [21]
    WATKINS W A and SCHEVILL W E. Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus[J]. Journal of Mammalogy, 1979, 60(1): 155–63. doi: 10.2307/1379766
    [22]
    杜永兆, 范宇凌, 柳培忠, 等. 多种群协方差学习差分进化算法[J]. 电子与信息学报, 2019, 41(6): 1488–1495. doi: 10.11999/JEIT180670

    DU Yongzhao, FAN Yuling, LIU Peizhong, et al. Multi-populations covariance learning differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1488–1495. doi: 10.11999/JEIT180670
    [23]
    徐建中, 晏福. 改进鲸鱼优化算法在电力负荷调度中的应用[J]. 运筹与管理, 2020, 29(9): 149–159. doi: 10.12005/orms.2020.0238

    XU Jianzhong and YAN Fu. The application of improved whale optimization algorithm in power load dispatching[J]. Operations Research and Management Science, 2020, 29(9): 149–159. doi: 10.12005/orms.2020.0238
    [24]
    郭振洲, 王平, 马云峰, 等. 基于自适应权重和柯西变异的鲸鱼优化算法[J]. 微电子学与计算机, 2017, 34(9): 20–25. doi: 10.19304/j.cnki.issn1000-7180.2017.09.005

    GUO Zhenzhou, WANG Ping, MA Yunfeng, et al. Whaleoptimization algorithm based on adaptive weight and Cauchy mutation[J]. Microelectronics &Computer, 2017, 34(9): 20–25. doi: 10.19304/j.cnki.issn1000-7180.2017.09.005
    [25]
    HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: Algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849–872. doi: 10.1016/j.future.2019.02.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(7)

    Article Metrics

    Article views (1077) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return