Citation: | Kai SHAO, Xuyang FU, Guangyu WANG. Intelligent Multi-carrier Waveform Modulation System: Signal Generation and Recognition[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3096-3104. doi: 10.11999/JEIT201064 |
[1] |
AAZHANG B, AHOKANGAS P, ALVES H, et al. Key drivers and research challenges for 6G ubiquitous wireless intelligence[EB/OL]. http://jultika.oulu.fi/files/isbn9789526223544.pdf, 2019.
|
[2] |
TOMKOS I, KLONIDIS D, PIKASIS E, et al. Toward the 6G network era: Opportunities and challenges[J]. IT Professional, 2020, 22(1): 34–38. doi: 10.1109/MITP.2019.2963491
|
[3] |
SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
|
[4] |
SADI Y, ERKUCUK S, and PANAYIRCI E. Flexible physical layer based resource allocation for machine type communications towards 6G[C]. 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, 2020: 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083921.
|
[5] |
SAHIN A, GUVENC I, and ARSLAN H. A survey on multicarrier communications: Prototype filters, lattice structures, and implementation aspects[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1312–1338. doi: 10.1109/SURV.2013.121213.00263
|
[6] |
MT-2020(5G)推进组. IMT-2020(5G)推进组发布5G技术白皮书[J]. 中国无线电, 2015(5): 6.
IMT-2020 Promotion Group. 5G wireless technology architecture white paper[J]. China Radio, 2015(5): 6.
|
[7] |
VIHRIALA J, ERMOLOVA N, LAHETKANGAS E, et al. On the waveforms for 5G mobile broadband communications[C]. 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, Scotland, 2015: 1–5. doi: 10.1109/VTCSPRING.2015.7145977.
|
[8] |
HAN Shuangfeng, XIE Tian, CHIH-LIN I, et al. Artificial-intelligence-enabled air interface for 6G: Solutions, challenges, and standardization impacts[J]. IEEE Communications Magazine, 2020, 58(10): 73–79. doi: 10.1109/MCOM.001.2000218
|
[9] |
YUAN Yabo, ZHAO Peng, WANG Bo, et al. Hybrid maximum likelihood modulation classification for continuous phase modulations[J]. IEEE Communications Letters, 2016, 20(3): 450–453. doi: 10.1109/LCOMM.2016.2517007
|
[10] |
WANG Hui and GUO Lili. A new method of automatic modulation recognition based on dimension reduction[C]. 2017 Forum on Cooperative Positioning and Service (CPGPS), Harbin, China, 2017: 316–320. doi: 10.1109/CPGPS.2017.8075146.
|
[11] |
SU Wei. Feature space analysis of modulation classification using very high-order statistics[J]. IEEE Communications Letters, 2013, 17(9): 1688–1691. doi: 10.1109/LCOMM.2013.080613.130070
|
[12] |
O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022
|
[13] |
WANG Yu, LIU Miao, YANG Jie, et al. Data-driven deep learning for automatic modulation recognition in cognitive radios[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4074–4077. doi: 10.1109/TVT.2019.2900460
|
[14] |
DUAN Sirui, CHEN Kan, YU Xiang, et al. Automatic multicarrier waveform classification via PCA and convolutional neural networks[J]. IEEE Access, 2018, 6: 51365–51373. doi: 10.1109/ACCESS.2018.2869901
|
[15] |
邵凯, 李述栋, 王光宇, 等. 基于迟滞噪声混沌神经网络的导频分配[J]. 电子与信息学报, 2020, 42(10): 2454–2461. doi: 10.11999/JEIT190748
SHAO Kai, LI Shudong, WANG Guangyu, et al. Hysteretic noisy chaotic neural networks based pilot assignment[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2454–2461. doi: 10.11999/JEIT190748
|
[16] |
桂冠, 王禹, 黄浩. 基于深度学习的物理层无线通信技术: 机遇与挑战[J]. 通信学报, 2019, 40(2): 19–23. doi: 10.11959/j.issn.1000?436x.2019043
GUI Guan, WANG Yu, and HUANG Hao. Deep learning based physical layer wireless communication techniques: Opportunities and challenges[J]. Journal on Communications, 2019, 40(2): 19–23. doi: 10.11959/j.issn.1000?436x.2019043
|
[17] |
HE Kaiming and SUN Jian. Convolutional neural networks at constrained time cost[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015. doi: 10.1109/CVPR.2015.7299173.
|
[18] |
盖建新, 薛宪峰, 吴静谊, 等. 基于深度卷积神经网络的协作频谱感知方法[J]. 电子与信息学报, 2021, 43(10): 2911–2919. doi: 10.11999/JEIT201005
GAI Jianxin, XUE Xianfeng, WU Jingyi, et al. Cooperative spectrum sensing method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2911–2919. doi: 10.11999/JEIT201005
|