Citation: | DUAN Yi, TAN Xiansi, QU Zhiguo, WANG Hong, XIE Zhenhua. Adaptive Resource Management Method for Phased Array Radar Based on RCS Prediction of Hypersonic Gliding Vehicle[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4151-4158. doi: 10.11999/JEIT201061 |
[1] |
洪延姬, 金星, 李小将. 等. 临近空间飞行器技术[M]. 北京: 国防工业出版社, 2012: 1–10.
HONG Yanji, JIN Xing, LI Xiaojiang, et al. Near Space Vehicle Technology[M]. Beijing: National Defense Industry Press, 2012: 1–10.
|
[2] |
XIA Rongsheng, CHEN Mou, WU Qingxian, et al. Neural network based integral sliding mode optimal flight control of near space hypersonic vehicle[J]. Neurocomputing, 2020, 379: 41–52. doi: 10.1016/j.neucom.2019.10.038
|
[3] |
张光义. 相控阵雷达原理[M]. 北京: 国防工业出版社, 2009: 72–80.
ZHANG Guangyi. Principles of Phased Array Radar[M]. Beijing: National Defense Industry Press, 2009: 72–80.
|
[4] |
SEOK J, KABAMBA P, and GIRARD A. Task selection for radar resource management in dynamic environments[J]. The Journal of Engineering, 2018, 2018(1): 1–9. doi: 10.1049/joe.2017.0236
|
[5] |
SEVERSON T A. Distributed optimization of resource allocation for search and track assignment with multifunction radars[D]. [Ph. D. dissertation], University of Maryland, 2013.
|
[6] |
张贞凯, 周建江, 汪飞, 等. 机载相控阵雷达射频隐身时最优搜索性能研究[J]. 宇航学报, 2011, 32(9): 2023–2028. doi: 10.3873/j.issn.1000-1328.2011.09.022
ZHANG Zhenkai, ZHOU Jianjiang, WANG Fei, et al. Research on optimal search performance of airborne phased array radar for radio frequency stealth[J]. Journal of Astronautics, 2011, 32(9): 2023–2028. doi: 10.3873/j.issn.1000-1328.2011.09.022
|
[7] |
KIM E H and PARK J. Dwell time optimization of alert-confirm detection for active phased array radars[J]. Journal of Electromagnetic Engineering and Science, 2019, 19(2): 107–114. doi: 10.26866/jees.2019.19.2.107
|
[8] |
陈怡君, 罗迎, 张群, 等. 基于认知ISAR成像的相控阵雷达资源自适应调度算法[J]. 电子与信息学报, 2014, 36(7): 1566–1572. doi: 10.3724/SP.J.1146.2013.00822
CHEN Yijun, LUO Ying, ZHANG Qun, et al. Adaptive scheduling algorithm for phased array radar based on cognitive ISAR imaging[J]. Journal of Electronics &Information Technology, 2014, 36(7): 1566–1572. doi: 10.3724/SP.J.1146.2013.00822
|
[9] |
孟迪, 张群, 罗迎, 等. 基于脉冲交错的数字阵列雷达任务优化调度算法[J]. 航空学报, 2017, 38(8): 167–176. doi: 10.7527/S1000-6893.2017.320930
MENG Di, ZHANG Qun, LUO Ying, et al. An effective scheduling algorithm for digital array radar based on pulse interleaving[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 167–176. doi: 10.7527/S1000-6893.2017.320930
|
[10] |
孟迪, 张群, 罗迎, 等. 微动目标跟踪成像一体化的雷达资源优化调度算法[J]. 航空学报, 2018, 39(2): 321492. doi: 10.7527/S1000-6893.2017.21492
MENG Di, ZHANG Qun, LUO Ying, et al. An optimal radar resource scheduling algorithm based on integrated tracking and imaging of micro-motion targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 321492. doi: 10.7527/S1000-6893.2017.21492
|
[11] |
田泰方, 张群, 陈怡君, 等. 基于二维资源管理的多功能雷达任务调度算法[J]. 航空学报, 2018, 39(12): 322313. doi: 10.7527/S1000-6893.2018.22313
TIAN Taifang, ZHANG Qun, CHEN Yijun, et al. A task scheduling algorithm for multifunctional radar based on two-dimensional resource management[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 322313. doi: 10.7527/S1000-6893.2018.22313
|
[12] |
MIR H S and GUITOUNI A. Variable dwell time task scheduling for multifunction radar[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 463–472. doi: 10.1109/TASE.2013.2285014
|
[13] |
Mir H S , Abdelaziz F B. Cyclic task scheduling for multifunction radar[J]. IEEE Transactions on Automation Science & Engineering, 2012, 9(3): 529–537. doi: 10.1109/TASE.2012.2197857
|
[14] |
ZHANG Zhenkai, ZHOU Jianjiang, WANG Fei, et al. Multiple-target tracking with adaptive sampling intervals for phased-array radar[J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 760–766. doi: 10.3969/j.issn.1004-4132.2011.05.006
|
[15] |
ZHANG Haowei, XIE Junwei, ZHANG Zhaojian, et al. Variable scheduling interval task scheduling for phased array radar[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 937–946. doi: 10.21629/JSEE.2018.05.06
|
[16] |
GILSON W H. Minimum power requirements of tracking[C]. Proceedings of the IEEE International Conference on Radar, Arlington, USA, 1990.
|
[17] |
DELIGIANNIS A, PANOUI A, LAMBOTHARAN S, et al. Game-theoretic power allocation and the Nash equilibrium analysis for a multistatic MIMO radar network[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6397–6408. doi: 10.1109/TSP.2017.2755591
|
[18] |
韩清华, 潘明海, 龙伟军. 基于机会约束规划的机会阵雷达功率资源管理算法[J]. 系统工程与电子技术, 2017, 39(3): 506–513. doi: 10.3969/j.issn.1001-506X.2017.03.08
HAN Qinghua, PAN Minghai, and LONG Weijun. Power resource management algorithm of opportunistic array radar based on chance-constraint programming[J]. Systems Engineering and Electronics, 2017, 39(3): 506–513. doi: 10.3969/j.issn.1001-506X.2017.03.08
|
[19] |
CHAVALI P and NEHORAI A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715–729. doi: 10.1109/TSP.2011.2174989
|
[20] |
严俊坤, 刘宏伟, 戴奉周, 等. 基于非线性机会约束规划的多基雷达系统稳健功率分配算法[J]. 电子与信息学报, 2014, 36(3): 509–515. doi: 10.3724/SP.J.1146.2013.00656
YAN Junkun, LIU Hongwei, DAI Fengzhou, et al. Nonlinear chance constrained programming based robust power allocation algorithm for multistatic radar systems[J]. Journal of Electronics &Information Technology, 2014, 36(3): 509–515. doi: 10.3724/SP.J.1146.2013.00656
|
[21] |
YAN Junkun, PU Wenqiang, LIU Hongwei, et al. Robust chance constrained power allocation scheme for multiple target localization in colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 3946–3957. doi: 10.1109/TSP.2018.2841865
|
[22] |
张贞凯, 许姣, 田雨波. 多目标跟踪时的自适应功率分配算法[J]. 信号处理, 2017, 33(S1): 22–26. doi: 10.16798/j.issn.1003-0530.2017.3A.004
ZHANG Zhenkai, XU Jiao, and TIAN Yubo. Adaptive power allocation algorithm for multiple target tracking[J]. Journal of Signal Processing, 2017, 33(S1): 22–26. doi: 10.16798/j.issn.1003-0530.2017.3A.004
|
[23] |
秦童, 戴奉周, 刘宏伟. 一种用于雷达资源管理的目标雷达截面积预测算法[J]. 电子与信息学报, 2015, 37(8): 1849–1854. doi: 10.11999/JEIT141466
QIN Tong, DAI Fengzhou, and LIU Hongwei. Radar cross section prediction method for radar resource management[J]. Journal of Electronics &Information Technology, 2015, 37(8): 1849–1854. doi: 10.11999/JEIT141466
|
[24] |
MERTENS M and ULMKE M. Ground target tracking with RCS estimation utilizing probability hypothesis density filters[C]. Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 2013.
|
[25] |
中国人民解放军总装备部军事训练教材编辑工作委员会. 再入物理[M]. 北京: 国防工业出版社, 2005: 40–98.
Editorial Committee of Military Training Materials of the General Armament Department of the Chinese People's Liberation Army. Reentry Physics[M]. Beijing: National Defense Industry Press, 2005: 40–98.
|
[26] |
HUBER P W. Hypersonic shock-heated flow parameters for velocities to 46, 000 feet per second and altitudes to 323, 000 feet[R]. R-163, 1963.
|
[27] |
张明友. 雷达系统[M]. 4版. 北京: 电子工业出版社, 2013: 192–208.
ZHANG Mingyou. Microwave Technology and Antennas[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2013: 192–208.
|
[28] |
何友, 修建娟, 张晶炜, 等. 雷达数据处理及应用[M]. 2版. 北京: 电子工业出版社, 2009: 142–160.
HE You, XIU Jianjuan, ZHANG Jingwei, et al. Radar Data Processing with Applications[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2009: 142–160.
|
[29] |
MARLEY C D and DRISCOLL J F. Heat transfer operability limits for an actively and passively cooled hypersonic vehicle[J]. Journal of Aircraft, 2018, 55(4): 1655–1674. doi: 10.2514/1.C034545
|
[30] |
PEI Pei, FAN Shipeng, WANG Wei, et al. Online reentry trajectory optimization using modified sequential convex programming for hypersonic vehicle[J]. IEEE Access, 2021, 9: 23511–23525. doi: 10.1109/ACCESS.2021.3056517
|