Citation: | Tianfu CAI, Mingyu LI, Yi JIN, Changzhi XU. An under-Sampling Restoration Digital Predistortion Technique Based on Landweber Iteration Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3166-3173. doi: 10.11999/JEIT201051 |
[1] |
ONOE S. 1.3 Evolution of 5G mobile technology toward 1 2020 and beyond[C]. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2016: 23–28. doi: 10.1109/ISSCC.2016.7417891.
|
[2] |
SHAFI M, MOLISCH A F, SMITH P J, et al. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(6): 1201–1221. doi: 10.1109/JSAC.2017.2692307
|
[3] |
NEININGER P, FRIESICKE C, KRAUSE S, et al. A sequential power amplifier at 3.5 GHz for 5G applications[C]. 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 2017: 284–287. doi: 10.23919/EuMC.2017.8230855.
|
[4] |
RANGAN S, RAPPAPORT T S, and ERKIP E. Millimeter-wave cellular wireless networks: Potentials and challenges[J]. Proceedings of the IEEE, 2014, 102(3): 366–385. doi: 10.1109/JPROC.2014.2299397
|
[5] |
KIM J and KONSTANTINOU K. Digital predistortion of wideband signals based on power amplifier model with memory[J]. Electronics Letters, 2001, 37(23): 1417–1418. doi: 10.1049/el:20010940
|
[6] |
WOOD J. System-level design considerations for digital pre-distortion of wireless base station transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1880–1890. doi: 10.1109/TMTT.2017.2659738
|
[7] |
GILABERT P L, VEGAS D, REN Zhixiong, et al. Design and digital predistortion linearization of a wideband outphasing amplifier supporting 200 MHz bandwidth[C]. 2020 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), San Antonio, USA, 2020: 46–49. doi: 10.1109/PAWR46754.2020.9035997.
|
[8] |
SHI Bo. Digital Predistortion linearization of wideband transmitter for high data rate satellite communications[C]. 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019: 1589–1591. doi: 10.1109/APMC46564.2019.9038220.
|
[9] |
曹韬, 刘友江, 杨春, 等. 高效宽带包络跟踪系统电路性能优化及非线性行为校正[J]. 电子与信息学报, 2020, 42(3): 787–794. doi: 10.11999/JEIT190275
CAO Tao, LIU Youjiang, YANG Chun, et al. Circuits optimization and system linearization for high efficiency and wideband envelope tracking architecture[J]. Journal of Electronics &Information Technology, 2020, 42(3): 787–794. doi: 10.11999/JEIT190275
|
[10] |
FRANK W A. Sampling requirements for Volterra system identification[J]. IEEE Signal Processing Letters, 1996, 3(9): 266–268. doi: 10.1109/97.536597
|
[11] |
兰榕, 胡欣, 邹峰, 等. 基于循环平稳特性的欠采样宽带数字预失真研究[J]. 电子与信息学报, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105
LAN Rong, HU Xin, ZOU Feng, et al. Research of low sampling frequency broadband digital predistortion with cyclostationary characteristics[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105
|
[12] |
KOEPPL H and SINGERL P. An efficient scheme for nonlinear modeling and predistortion in mixed-signal systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, 53(12): 1368–1372. doi: 10.1109/TCSII.2006.882232
|
[13] |
ZHU Anding, DRAXLER P J, YAN J J, et al. Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based volterra series[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(7): 1524–1534. doi: 10.1109/TMTT.2008.925211
|
[14] |
CAO Wenhui, LI Yue, and ZHU Anding. Digital suppression of transmitter leakage in FDD RF transceivers: aliasing elimination and model selection[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1500–1511. doi: 10.1109/TMTT.2017.2772789
|
[15] |
YU Chao, GUAN Lei, ZHU Erni, et al. Band-limited volterra series-based digital predistortion for wideband RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 4198–4208. doi: 10.1109/TMTT.2012.2222658
|
[16] |
MA Yuelin, YAMAO Y, AKAIWA Y, et al. Wideband digital predistortion using spectral extrapolation of band-limited feedback signal[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(7): 2088–2097. doi: 10.1109/TCSI.2013.2295897
|
[17] |
WANG Haoyu, LIU Falin, and TAO Wei. Robust and fast iterative algorithm based on Levenberg-Marquardt and spectral extrapolation for wideband digital predistortion of RF power amplifiers[C]. 2015 IEEE International Wireless Symposium (IWS 2015), Shenzhen, China, 2015: 1–4. doi: 10.1109/IEEE-IWS.2015.7164579.
|
[18] |
LIU Youjiang, YAN J J, DABAG H T, et al. Novel technique for wideband digital predistortion of power amplifiers with an under-sampling ADC[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(11): 2604–2617. doi: 10.1109/TMTT.2014.2360398
|
[19] |
YU Chao, LU Qianyun, YIN Hang, et al. Linear-decomposition digital predistortion of power amplifiers for 5g ultrabroadband applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(7): 2833–2844. doi: 10.1109/TMTT.2020.2975637
|
[20] |
LI Yue, WANG Xiaoyu, and ZHU Anding. Sampling rate reduction for digital predistortion of broadband RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 1054–1064. doi: 10.1109/TMTT.2019.2944813
|
[21] |
WANG Peiyuan and ZHOU Haiyun. Adaptive Landweber image reconstruction with an optimal presetting method[C]. 2013 Ninth International Conference on Natural Computation (ICNC), Shenyang, China, 2013: 1289–1293. doi: 10.1109/ICNC.2013.6818177.
|