Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
XU Fangmin, WU Lijiao, WANG Xiang, ZHAO Chenglin. Research on Prediction Based Emergency Resource Allocation in 5G Uplink[J]. Journal of Electronics & Information Technology, 2022, 44(2): 611-619. doi: 10.11999/JEIT201050
Citation: XU Fangmin, WU Lijiao, WANG Xiang, ZHAO Chenglin. Research on Prediction Based Emergency Resource Allocation in 5G Uplink[J]. Journal of Electronics & Information Technology, 2022, 44(2): 611-619. doi: 10.11999/JEIT201050

Research on Prediction Based Emergency Resource Allocation in 5G Uplink

doi: 10.11999/JEIT201050
Funds:  The 2019 Industrial Internet Innovation Development Project of Ministry of Industry and Information Technology of P.R. China “Comprehensive Security Defense Platform Project for Industrial/Enterprise Networks”, The Beijing Natural Science Foundation - Haidian Frontier Project Research on Key Technologies of Wireless Edge Intelligent Collaboration for Industrial Internet Scenarios (L202017)
  • Received Date: 2020-12-14
  • Rev Recd Date: 2021-05-18
  • Available Online: 2021-06-03
  • Publish Date: 2022-02-25
  • As a typical application scenario of 5G uRLLC, the data transmission delay and reliability requirements of industrial applications are more and more stringent, and the convergent transmission of diversified data becomes an urgent problem to be solved. One of the important challenges is the efficient scheduling of wireless resources to ensure the coexistence of various data transmission without interfering with each other and stable operation of the system. In view of 5G uplink transmission in industrial transmission scenarios, a prediction-based resource allocation scheme is proposed, which uses Auto Regressive Moving Average (ARMA) model to predict the activation rates of the next transmission cycle based on the historical data. Then the resources are dynamically reserved for periodic and emergency data, so as to minimize the impact on periodic data transmission under the premise of meeting the emergency data transmission conditions. Experimental results show that, compared with the traditional resource allocation scheme, this scheme can effectively reduce the impact of emergency data transmission on periodic data and improve the utilization of spectrum resources.
  • loading
  • [1]
    ESSWIE A A and PEDERSEN K I. Multi-user preemptive scheduling for critical low latency communications in 5G networks[C]. 2018 IEEE Symposium on Computers and Communications, Natal, Brazil, 2018: 136–141. doi: 10.1109/ISCC.2018.8538471.
    [2]
    PARVEZ I, RAHMATI A, GUVENC I, et al. A survey on low latency towards 5G: RAN, core network and caching solutions[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3098–3130. doi: 10.1109/COMST.2018.2841349
    [3]
    VITTURI S, ZUNINO C, and SAUTER T. Industrial communication systems and their future challenges: Next-generation ethernet, IIoT, and 5G[J]. Proceedings of the IEEE, 2019, 107(6): 944–961. doi: 10.1109/JPROC.2019.2913443
    [4]
    刘瑞祥. 基于物联网的煤矿井下监测网络平台关键技术研究[D]. [博士论文], 中国矿业大学(北京), 2015.

    LIU Ruixiang. Research on the key technology of coal mine monitoring network platform based on internet of things[D]. [Ph. D. dissertation], China University of Mining and Technology (Beijng), 2015.
    [5]
    SHEN Wei, ZHANG Tingting, BARAC F, et al. PriorityMAC: A priority-enhanced MAC protocol for critical traffic in industrial wireless sensor and actuator networks[J]. IEEE Transactions on Industrial Informatics, 2014, 10(1): 824–835. doi: 10.1109/TII.2013.2280081
    [6]
    FARAG H, GIDLUND M, and ÖSTERBERG P. A delay-bounded MAC protocol for mission- and time-critical applications in industrial wireless sensor networks[J]. IEEE Sensors Journal, 2018, 18(6): 2607–2616. doi: 10.1109/JSEN.2018.2793946
    [7]
    ELAYOUBI S E, BROWN P, DEGHEL M, et al. Radio resource allocation and retransmission schemes for URLLC over 5G networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(4): 896–904. doi: 10.1109/JSAC.2019.2898783
    [8]
    CONDOLUCI M, MAHMOODI T, STEINBACH E, et al. Soft resource reservation for low-delayed teleoperation over mobile networks[J]. IEEE Access, 2017, 5: 10445–10455. doi: 10.1109/ACCESS.2017.2707319
    [9]
    CHEN Hongyang, WU Jianming, and SHIMOMURA T. New reference signal design for URLLC and eMBB multiplexing in new radio wireless communications[C]. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1220–1225.
    [10]
    ALSENWI M, TRAN N H, BENNIS M, et al. eMBB-URLLC resource slicing: A risk-sensitive approach[J]. IEEE Communications Letters, 2019, 23(4): 740–743. doi: 10.1109/LCOMM.2019.2900044
    [11]
    LI Mingyan, GUAN Xinping, HUA Cunqing, et al. Predictive pre-allocation for low-latency uplink access in industrial wireless networks[C]. IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, USA, 2018: 306–314.
    [12]
    BROWN J and KHAN J Y. A Predictive resource allocation algorithm in the LTE uplink for event based M2M applications[J]. IEEE Transactions on Mobile Computing, 2015, 14(12): 2433–2446. doi: 10.1109/TMC.2015.2398447
    [13]
    唐伦, 杨希希, 施颖洁, 等. 无线虚拟网络中基于自回归滑动平均预测的在线自适应虚拟资源分配算法[J]. 电子与信息学报, 2019, 41(1): 16–23. doi: 10.11999/JEIT180048

    TANG Lun, YANG Xixi, SHI Yingjie, et al. ARMA-prediction based online adaptive dynamic resource allocation in wireless virtualized networks[J]. Journal of Electronics &Information Technology, 2019, 41(1): 16–23. doi: 10.11999/JEIT180048
    [14]
    陈强. 基于ARMA模型预测的云计算资源调度策略研究[D]. [硕士论文], 重庆大学, 2016.

    CHEN Qiang. Cloud computing resource scheduling strategy based on ARMA model prediction[D]. [Master dissertation], Chongqing University, 2016.
    [15]
    LIU C R, DUAN H Y, CHEN P W, et al. Improve production efficiency and predict machine tool status using Markov chain and hidden markov model[C]. 2018 8th International Conference on Computer Science and Information Technology, Amman, Jordan, 2018: 276–281.
    [16]
    熊余, 杨娅娅, 张振振, 等. 软件定义时分波分复用无源光网络中基于带宽预测的资源分配策略[J]. 电子与信息学报, 2019, 41(8): 1885–1892. doi: 10.11999/JEIT180837

    XIONG Yu, YANG Yaya, ZHANG Zhenzhen, et al. Resource allocation based on bandwidth prediction in software-defined time and wavelength division multiplexed passive optical network[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1885–1892. doi: 10.11999/JEIT180837
    [17]
    ZHANG Zhengming, CHEN Hongyang, HUA Meng, et al. Double coded caching in ultra dense networks: Caching and multicast scheduling via deep reinforcement learning[J]. IEEE Transactions on Communications, 2020, 68(2): 1071–1086. doi: 10.1109/TCOMM.2019.2955490
    [18]
    师圣蔓. 基于机器学习的网络流量预测与应用研究[D]. [硕士论文], 北京邮电大学, 2019.

    SHI Shengman. Research on network traffic prediction and application based on machine learning[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (860) PDF downloads(139) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return