Citation: | Weigang LI, Jingcheng SHEN, Lu XIE, Yuntao ZHAO. Semi Supervised Learning of Metallographic Data Based on Self-organizing Incremental and Graph Convolution Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3301-3308. doi: 10.11999/JEIT201029 |
[1] |
ZHAO H, WYNNE B P, and PALMIERE E J. A phase quantification method based on EBSD data for a continuously cooled microalloyed steel[J]. Materials Characterization, 2017, 123: 339–348. doi: 10.1016/j.matchar.2016.11.024
|
[2] |
YANG Youwen, HE Chongxian, E Dianyu, et al. Mg bone implant: Features, developments and perspectives[J]. Materials & Design, 2020, 185: 108259. doi: 10.1016/j.matdes.2019.108259
|
[3] |
TERASAKI H, MIYAHARA Y, HAYASHI K, et al. Digital identification scheme for steel microstructures in low-carbon steel[J]. Materials Characterization, 2017, 129: 305–312. doi: 10.1016/j.matchar.2017.05.021
|
[4] |
PANCHAL J H, KALIDINDI S R, and MCDOWELL D L. Key computational modeling issues in Integrated Computational Materials Engineering[J]. Computer-Aided Design, 2013, 45(1): 4–25. doi: 10.1016/j.cad.2012.06.006
|
[5] |
LU Xiaochong, ZHANG Xu, SHI Mingxing, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper[J]. International Journal of Plasticity, 2019, 113: 52–73. doi: 10.1016/j.ijplas.2018.09.007
|
[6] |
WANG Hongda, RIVENSON Y, JIN Yiyin, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 2019, 16(1): 103–110. doi: 10.1038/s41592-018-0239-0
|
[7] |
DECOST B L, LEI Bo, FRANCIS T, et al. High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel[J]. Microscopy and Microanalysis, 2019, 25(1): 21–29. doi: 10.1017/S1431927618015635
|
[8] |
PAULY J, BRITZ D, and MÜCKLICH F. Advanced microstructure classification using data mining methods[C]. In TMP - 5th International Conference on TermoMechanical Processing, Milan, Italy, 2016: 12–25.
|
[9] |
CHOWDHURY A, KAUTZ E, YENER B, et al. Image driven machine learning methods for microstructure recognition[J]. Computational Materials Science, 2016, 123: 176–187. doi: 10.1016/j.commatsci.2016.05.034
|
[10] |
AZIMI S M, BRITZ D, ENGSTLER M, et al. Advanced steel microstructural classification by deep learning methods[J]. Scientific Reports, 2018, 8(1): 2128. doi: 10.1038/s41598-018-20037-5
|
[11] |
李维刚, 谌竟成, 范丽霞, 等. 基于卷积神经网络的钢铁材料微观组织自动辨识[J]. 钢铁研究学报, 2020, 32(1): 33–43. doi: 10.13228/j.boyuan.issn1001-0963.20190147
LI Weigang, SHEN Jingcheng, FAN Lixia, et al. Automatic identification of microstructure of iron and steel material based on convolutional neural network[J]. Journal of Iron and Steel Research, 2020, 32(1): 33–43. doi: 10.13228/j.boyuan.issn1001-0963.20190147
|
[12] |
LI Bentian and PI Dechang. Network representation learning: A systematic literature review[J]. Neural Computing and Applications, 2020, 32(21): 16647–16679. doi: 10.1007/s00521-020-04908-5
|
[13] |
康世泽, 吉立新, 张建朋. 一种基于图注意力网络的异质信息网络表示学习框架[J]. 电子与信息学报, 2021, 43(4): 915–922. doi: 10.11999/JEIT200034
KANG Shize, JI Lixin, and ZHANG Jianpeng. Heterogeneous information network representation learning framework based on graph attention network[J]. Journal of Electronics &Information Technology, 2021, 43(4): 915–922. doi: 10.11999/JEIT200034
|
[14] |
李世宝, 张益维, 刘建航, 等. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 待发表. doi: 10.11999/JEIT200735.
LI Shibao, ZHANG Yiwei, LIU Jianhang, et al. Recommendation model based on public neighbor sorting and sampling of knowledge graph[J]. Journal of Electronics & Information Technology, To be published. doi: 10.11999/JEIT200735.
|
[15] |
ORTEGA A, FROSSARD P, KOVAČEVIĆ J, et al. Graph signal processing: Overview, challenges, and applications[J]. Proceedings of the IEEE, 2018, 106(5): 808–828. doi: 10.1109/JPROC.2018.2820126
|
[16] |
HAMILTON W L, YING R, and LESKOVEC J. Inductive representation learning on large graphs[J]. arXiv preprint arXiv: 1706.02216, 2017.
|
[17] |
KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv: 1609.02907, 2016.
|
[18] |
CHEN Jie, MA Tengfei, and XIAO Cao. FastGCN: Fast learning with graph convolutional networks via importance sampling[J]. arXiv preprint arXiv: 1801.10247, 2018.
|
[19] |
SHEN Furao and HASEGAWA O. An incremental network for on-line unsupervised classification and topology learning[J]. Neural Networks, 2006, 19(1): 90–106. doi: 10.1016/j.neunet.2005.04.006
|