Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Yanling SHI, Tingting YAO, Yaxing GUO. Floating Small Target Detection Based on Graph Connected Density in Sea Surface[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3185-3192. doi: 10.11999/JEIT201028
Citation: Yanling SHI, Tingting YAO, Yaxing GUO. Floating Small Target Detection Based on Graph Connected Density in Sea Surface[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3185-3192. doi: 10.11999/JEIT201028

Floating Small Target Detection Based on Graph Connected Density in Sea Surface

doi: 10.11999/JEIT201028
  • Received Date: 2020-12-07
  • Rev Recd Date: 2021-03-21
  • Available Online: 2021-04-09
  • Publish Date: 2021-11-23
  • Due to the weak energy of the floating small targets, it is hard to be detected in sea surface. Relying on the energy, the traditional detectors based on statistical model inevitable loss the detection performance, regardless of the correlation between the frequency domain amplitudes. Therefore, in the paper, the correlation between the frequency domain amplitudes is considered by using the graph. Firstly, the connected density is calculated by the correlation between the frequency domain amplitudes of the echo pulses. Secondly, an adjacency matrix is generated based on the correlation. Thirdly, the adjacency matrix is converted to a Laplacian matrix. Lastly, the maximum eigenvalue of the Laplacian matrix is extracted as the detection feature. Thus, the detector based on the connected density of the graph is proposed for the floating small targets in sea surface. The analysis of the connected density of the measured Ice multiParameter Imaging X-band(IPIX) radar data shows that the graph composed by the sea clutter is relatively dense, whereas the graph composed by the floating small targets is relatively sparse. Thus, the connected density can effectively distinguish the floating small targets between the sea clutter. Furthermore, the experimental results show that, compared with other algorithms, the detection performance of the proposed connected density of the graph algorithm is obviously superior.
  • loading
  • [1]
    丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
    [2]
    张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法[J]. 电子与信息学报, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441

    ZHANG Kun, SHUI Penglang, and WANG Guanghui. Non-coherent integration constant false alarm rate detectors against K-distributed sea clutter for coherent radar systems[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441
    [3]
    ZHOU Wei, XIE Junhao, LI Gaopeng, et al. Robust CFAR detector with weighted amplitude iteration in nonhomogeneous sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1520–1535. doi: 10.1109/TAES.2017.2671798
    [4]
    SHI Yanling. Three GLRT detectors for range distributed target in grouped partially homogeneous radar environment[J]. Signal Processing, 2017, 135: 121–131. doi: 10.1016/j.sigpro.2016.12.030
    [5]
    ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
    [6]
    LI Dongchen and SHUI Penglang. Floating small target detection in sea clutter via normalised Hurst exponent[J]. Electronics Letters, 2014, 50(17): 1240–1242. doi: 10.1049/el.2014.1569
    [7]
    SHI Yanling, ZHANG Xueliang, and LIU Zipeng. Floating small target detection in sea clutter based on jointed features in FRFT domain[C]. The 3rd EAI International Conference on Advanced Hybrid Information Processing, Nanjing, China, 2019: 128–139. doi: 10.1007/978-3-030-36405-2_14.
    [8]
    陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040

    CHEN Xiaolong, GUAN Jian, YU Xiaohan, et al. Radar Micro-Doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040
    [9]
    SHI Yanling, XIE Xiaoyan, and LI Dongchen. Range distributed floating target detection in sea clutter via feature-based detector[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1847–1850. doi: 10.1109/LGRS.2016.2614750
    [10]
    时艳玲, 杜宇翔, 蒋锐, 等. 部分均匀海杂波中基于分组加权的协方差矩阵估计算法[J]. 信号处理, 2019, 35(7): 1170–1179. doi: 10.16798/j.issn.1003-0530.2019.07.006

    SHI Yanling, DU Yuxiang, JIANG Rui, et al. A grouped weighted covariance matrix estimator in partially homogeneous sea clutter[J]. Journal of Signal Processing, 2019, 35(7): 1170–1179. doi: 10.16798/j.issn.1003-0530.2019.07.006
    [11]
    XU Shuwen, ZHENG Jibin, PU Jia, et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1505–1509. doi: 10.1109/LGRS.2018.2852560
    [12]
    陈世超, 高鹤婷, 罗丰. 基于极化联合特征的海面目标检测方法[J]. 雷达学报, 2020, 9(4): 664–673. doi: 10.12000/JR20072

    CHEN Shichao, GAO Heting, and LUO Feng. Target detection in sea clutter based on combined characteristics of polarization[J]. Journal of Radars, 2020, 9(4): 664–673. doi: 10.12000/JR20072
    [13]
    CHEN Shichao, LUO Feng, and LUO Xianxian. Multiview feature-based sea surface small target detection in short observation time[J]. IEEE Geoscience and Remote Sensing Letters, 2020(99): 1–5. doi: 10.1109/LGRS.2020.2994341
    [14]
    SANDRYHAILA A and MOURA J M F. Discrete signal processing on graphs: Frequency analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3042–3054. doi: 10.1109/tsp.2014.2321121
    [15]
    姜琦, 王锐, 周超, 等. 基于代数图论的修正贝叶斯群目标航迹起始算法[J]. 电子与信息学报, 2021, 43(3): 531–538. doi: 10.11999/JEIT200449

    JIANG Qi, WANG Rui, ZHOU Chao, et al. Modified Bayesian group target track initiation algorithm based on algebraic graph theory[J]. Journal of Electronics &Information Technology, 2021, 43(3): 531–538. doi: 10.11999/JEIT200449
    [16]
    YAN Kun, WU H C, XIAO Hailin, et al. Novel robust band-limited signal detection approach using graphs[J]. IEEE Communications Letter, 2017, 21(1): 20–23. doi: 10.1109/LCOMM.2016.2618871
    [17]
    YAN Kun, BAI Yu, WU H C, et al. Robust target detection within sea clutter based on graphs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7093–7103. doi: 10.1109/TGRS.2019.2911451
    [18]
    李炯生, 张晓东, 潘永亮. 图的Laplace特征值[J]. 数学进展, 2003, 32(2): 157–165. doi: 10.3969/j.issn.1000-0917.2003.02.003

    LI Jiongsheng, ZHANG Xiaodong, and PAN Yongliang. Laplacian eigenvalues of graphs[J]. Advances in Mathematics, 2003, 32(2): 157–165. doi: 10.3969/j.issn.1000-0917.2003.02.003
    [19]
    DE ABREU N M M. Old and new results on algebraic connectivity of graphs[J]. Linear Algebra and its Applications, 2007, 423(1): 53–73. doi: 10.1016/j.laa.2006.08.017
    [20]
    LI Ying, YANG Yonghu, and ZHU Xueyuan. Target detection in sea clutter based on multifractal characteristics after empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1547–1551. doi: 10.1109/LGRS.2017.2721463
    [21]
    HAYKIN S. The mcmaster IPIX radar sea clutter database in 1993[EB/OL]. http://soma.ece.mcmaster.ca/ipix/dartmouth, 2016.
    [22]
    SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1156) PDF downloads(159) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return