Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
JIANG Wentao, LIU Xiaoxuan, TU Chao, JIN Yan. Adaptive Spatial and Anomaly Target Tracking[J]. Journal of Electronics & Information Technology, 2022, 44(2): 523-533. doi: 10.11999/JEIT201025
Citation: JIANG Wentao, LIU Xiaoxuan, TU Chao, JIN Yan. Adaptive Spatial and Anomaly Target Tracking[J]. Journal of Electronics & Information Technology, 2022, 44(2): 523-533. doi: 10.11999/JEIT201025

Adaptive Spatial and Anomaly Target Tracking

doi: 10.11999/JEIT201025
Funds:  The National Natural Science Foundation of China (61172144), The National Natural Science Foundation of Liaoning Province (20170540426), The Foundation of Education Department of Liaoning Province (LJYL049)
  • Received Date: 2020-12-07
  • Rev Recd Date: 2021-08-14
  • Available Online: 2021-09-15
  • Publish Date: 2022-02-25
  • In order to solve the problem that the target tracking algorithm based on the discriminant spatial regularization term has a high mistracking rate under the interference of occlusion, rotation and other factors, an adaptive spatial and anomaly target tracking is proposed. Firstly, an adaptive spatial regularization term is constructed in the objective function, which not only alleviates the influence of boundary effect, but also improves the resolution of the filter between the target and the background region. Secondly, the verification score is calculated according to the response value of each frame, and the reliability and abnormality of the tracking results are analyzed. Finally, the updating rate of target model and response model is dynamically evaluated. A large number of experimental results show that the target tracking algorithm based on adaptive spatial anomaly can deal with background blur, shape change and other abnormal situations well, and has robust tracking performance.
  • loading
  • [1]
    卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61–67. doi: 10.16451/j.cnki.issn1003-6059.201801006

    LU Huchuan, LI Peixia, and WANG Dong. Visual object tracking: A survey[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61–67. doi: 10.16451/j.cnki.issn1003-6059.201801006
    [2]
    葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8): 1091–1107. doi: 10.11834/jig.170604

    GE Baoyi, ZUO Xianzhang, and HU Yongjiang. Review of visual object tracking technology[J]. Journal of Image and Graphics, 2018, 23(8): 1091–1107. doi: 10.11834/jig.170604
    [3]
    孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244–1260. doi: 10.16383/j.aas.c180277

    MENG Lu and YANG Xu. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244–1260. doi: 10.16383/j.aas.c180277
    [4]
    段建民, 马学峥, 柳新. 基于MFAPC的无人驾驶汽车路径跟踪方法[J]. 计算机工程, 2019, 45(6): 6–11, 20. doi: 10.19678/j.issn.1000-3428.0052439

    DUAN Jianmin, MA Xuezheng, and LIU Xin. Path tracking method of unmanned vehicle based on MFAPC[J]. Computer Engineering, 2019, 45(6): 6–11, 20. doi: 10.19678/j.issn.1000-3428.0052439
    [5]
    姜文涛, 刘万军, 袁姮. 基于软特征理论的目标跟踪研究[J]. 计算机学报, 2016, 39(7): 1334–1355. doi: 10.11897/SP.J.1016.2016.01334

    JIANG Wentao, LIU Wanjun, and YUAN Heng. Research of object tracking based on soft feature theory[J]. Chinese Journal of Computers, 2016, 39(7): 1334–1355. doi: 10.11897/SP.J.1016.2016.01334
    [6]
    李娜, 吴玲风, 李大湘. 基于相关滤波的长期跟踪算法[J]. 模式识别与人工智能, 2018, 31(10): 899–908. doi: 10.16451/j.cnki.issn1003-6059.201810004

    LI Na, WU Lingfeng, and LI Daxiang. Long-term tracking algorithm based on correlation filter[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(10): 899–908. doi: 10.16451/j.cnki.issn1003-6059.201810004
    [7]
    刘万军, 孙虎, 姜文涛. 自适应特征选择的相关滤波跟踪算法[J]. 光学学报, 2019, 39(6): 0615004. doi: 10.3788/AOS201939.0615004

    LIU Wanjun, SUN Hu, and JIANG Wentao. Correlation filter tracking algorithm for adaptive feature selection[J]. Acta Optica Sinica, 2019, 39(6): 0615004. doi: 10.3788/AOS201939.0615004
    [8]
    姜文涛, 涂潮, 刘万军. 背景与方向感知的相关滤波跟踪[J]. 中国图象图形学报, 2021, 26(3): 527–541. doi: 10.11834/jig.200139

    JIANG Wentao, TU Chao, and LIU Wanjun. Background and direction-aware correlation filter tracking[J]. Journal of Image and Graphics, 2021, 26(3): 527–541. doi: 10.11834/jig.200139
    [9]
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550. doi: 10.1109/CVPR.2010.5539960.
    [10]
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 702–715. doi: 10.1007/978-3-642-33765-9_50.
    [11]
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/TPAMI.2014.2345390
    [12]
    DANELLJAN M, HÄGER G, KHAN F M, et al. Learning spatially regularized correlation filters for visual tracking[C]. IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 4310–4318. doi: 10.1109/ICCV.2015.490.
    [13]
    GALOOGAHI H K, SIM T, and LUCEY S. Correlation filters with limited boundaries[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 4630–4638. doi: 10.1109/CVPR.2015.7299094.
    [14]
    GALOOGAHI H K, FAGG A, and LUCEY S. Learning background-aware correlation filters for visual tracking[C]. Proceeding of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1144–1152. doi: 10.1109/ICCV.2017.129.
    [15]
    LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913. doi: 10.1109/CVPR.2018.00515.
    [16]
    DAI Ke’nan, WANG Dong, LU Huchuan, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 4665–4674. doi: 10.1109/CVPR.2019.00480.
    [17]
    LI Yiming, FU Changhong, DING Fangqiang, et al. AutoTrack: Towards high-performance visual tracking for UAV with automatic spatio-temporal regularization[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11920–11929. doi: 10.1109/CVPR42600.2020.01194.
    [18]
    HUANG Ziyuan, FU Changhong, LI Yiming, et al. Learning aberrance repressed correlation filters for real-time UAV tracking[C]. IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 2891–2900. doi: 10.1109/ICCV.2019.00298.
    [19]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2010, 3(1): 1–122. doi: 10.1561/2200000016
    [20]
    马燕青. 求解约束优化问题的增广拉格朗日函数法[D]. [硕士论文], 重庆师范大学, 2013.

    MA Yanqing. Augmented lagrangian function methods for solving constrained optimization problems[D]. [Master dissertation], Chongqing Normal University, 2013.
    [21]
    BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1401–1409. doi: 10.1109/CVPR.2016.156.
    [22]
    DANELLJAN M, BHAT G, KHAN F S, et al. ECO: Efficient convolution operators for tracking[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6931–6939. doi: 10.1109/CVPR.2017.733.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (999) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return