Citation: | Hang QIU, Hongbo TANG, Wei YOU. Online Service Function Chain Deployment Method Based on Deep Q Network[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3122-3130. doi: 10.11999/JEIT201009 |
[1] |
ETSI. Network Functions Virtualisation (NFV)[EB/OL]. https://www.etsi.org/technologies/nfv, 2020.
|
[2] |
YI Bo, WANG Xingwei, LI Keqin, et al. A comprehensive survey of network function virtualization[J]. Computer Networks, 2018, 133: 212–262. doi: 10.1016/j.comnet.2018.01.021
|
[3] |
ERAMO V, MIUCCI E, AMMAR M, et al. An approach for service function chain routing and virtual function network instance migration in network function virtualization architectures[J]. IEEE/ACM Transactions on Networking, 2017, 25(4): 2008–2025. doi: 10.1109/TNET.2017.2668470
|
[4] |
KARAKUS M and DURRESI A. A survey: Control plane scalability issues and approaches in Software-Defined Networking (SDN)[J]. Computer Networks, 2017, 112: 279–293. doi: 10.1016/j.comnet.2016.11.017
|
[5] |
BHAMARE D, JAIN R, SAMAKA M, et al. A survey on service function chaining[J]. Journal of Network and Computer Applications, 2016, 75: 138–155. doi: 10.1016/j.jnca.2016.09.001
|
[6] |
MIJUMBI R, SERRAT J, GORRICHO J L, et al. Network function virtualization: State-of-the-art and research challenges[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 236–262. doi: 10.1109/COMST.2015.2477041
|
[7] |
BARI M F, CHOWDHURY S R, AHMED R, et al. Orchestrating virtualized network functions[J]. IEEE Transactions on Network and Service Management, 2016, 13(4): 725–739. doi: 10.1109/TNSM.2016.2569020
|
[8] |
LIU Jiaqiang, LI Yong, ZHANG Ying, et al. Improve service chaining performance with optimized middlebox placement[J]. IEEE Transactions on Services Computing, 2017, 10(4): 560–573. doi: 10.1109/TSC.2015.2502252
|
[9] |
KUO T W, LIOU B H, LIN K C J, et al. Deploying chains of virtual network functions: On the relation between link and server usage[C]. IEEE INFOCOM 2016 - the 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524565.
|
[10] |
SUN Quanying, LU Ping, LU Wei, et al. Forecast-assisted NFV service chain deployment based on affiliation-aware vNF placement[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7841846.
|
[11] |
LI Defang, HONG Peilin, XUE Kaiping, et al. Virtual network function placement considering resource optimization and SFC requests in cloud datacenter[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(7): 1664–1677. doi: 10.1109/TPDS.2018.2802518
|
[12] |
HAWILO H, JAMMAL M, and SHAMI A. Network function virtualization-aware orchestrator for service function chaining placement in the cloud[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 643–655. doi: 10.1109/JSAC.2019.2895226
|
[13] |
TANG Hong, ZHOU D, and CHEN Duan. Dynamic network function instance scaling based on traffic forecasting and VNF placement in operator data centers[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(3): 530–543. doi: 10.1109/TPDS.2018.2867587
|
[14] |
QI Dandan, SHEN Subin, and WANG Guanghui. Towards an efficient VNF placement in network function virtualization[J]. Computer Communications, 2019, 138: 81–89. doi: 10.1016/j.comcom.2019.03.005
|
[15] |
SINGH S, OKUN A, and JACKSON A. Learning to play Go from scratch[J]. Nature, 2017, 550(7676): 336–337. doi: 10.1038/550336a
|
[16] |
袁泉, 汤红波, 黄开枝, 等. 基于Q-learning算法的vEPC虚拟网络功能部署方法[J]. 通信学报, 2017, 38(8): 172–182. doi: 10.11959/j.issn.1000-436x.2017173
YUAN Quan, TANG Hongbo, HUANG Kaizhi, et al. Deployment method for vEPC virtualized network function via Q-learning[J]. Journal on Communications, 2017, 38(8): 172–182. doi: 10.11959/j.issn.1000-436x.2017173
|
[17] |
XIAO Yikai, ZHANG Qixia, LIU Fangming, et al. NFVdeep: Adaptive online service function chain deployment with deep reinforcement learning[C]. Proceedings of the International Symposium on Quality of Service, Arizona, USA, 2019: 1–10. doi: 10.1145/3326285.3329056.
|
[18] |
QUANG P T A, HADJADJ-AOUL Y, and OUTTAGARTS A. A deep reinforcement learning approach for VNF forwarding graph embedding[J]. IEEE Transactions on Network and Service Management, 2019, 16(4): 1318–1331. doi: 10.1109/TNSM.2019.2947905
|
[19] |
KINGMAN J F C. Poisson Processes[M]. ARMITAGE P and COLTON T. Encyclopedia of Biostatistics. Chichester: John Wiley & Sons, 2005. doi: 10.1002/0470011815.b2a07042.
|
[20] |
HOWARD R A. Dynamic programming and Markov processes[J]. Technometrics, 1961, 3(1): 120–121. doi: 10.2307/1266484
|
[21] |
The University of Adelaide. The internet topology zoo[EB/OL]. http://www.topology-zoo.org/dataset.html, 2012.
|
[22] |
Networkx. Network analysis in python: Important structures and bipartite graphs[EB/OL]. https://coderzcolumn.com/tutorials/data-science/network-analysis-in-python-important-structures-and-bipartite-graphs-networkx, 2020.
|
[23] |
YALA L, FRANGOUDIS P A, LUCARELLI G, et al. Cost and availability aware resource allocation and virtual function placement for CDNaaS provision[J]. IEEE Transactions on Network and Service Management, 2018, 15(4): 1334–1348. doi: 10.1109/TNSM.2018.2874524
|
[24] |
OCHOA-ADAY L, CERVELLÓ-PASTOR C, FERNÁNDEZ-FERNÁNDEZ A, et al. An online algorithm for dynamic NFV placement in cloud-based autonomous response networks[J]. Symmetry, 2018, 10(5): 163. doi: 10.3390/sym10050163
|
[25] |
MAROTTA A, ZOLA E, D’ANDREAGIOVANNI F, et al. A fast robust optimization-based heuristic for the deployment of green virtual network functions[J]. Journal of Network and Computer Applications, 2017, 95: 42–53. doi: 10.1016/j.jnca.2017.07.014
|
[26] |
SHI Runyu, ZHANG Jia, CHU Wenjing, et al. MDP and machine learning-based cost-optimization of dynamic resource allocation for network function virtualization[C]. 2015 IEEE International Conference on Services Computing, New York, USA, 2015: 65–73. doi: 10.1109/SCC.2015.19.
|