Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Shibao LI, Xun GAO, Zhenwei DONG, Jianhang LIU, Xuerong CUI. A Puncturing Algorithm of Polar Code Based on Gaussian Approximation[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3149-3155. doi: 10.11999/JEIT201007
Citation: Shibao LI, Xun GAO, Zhenwei DONG, Jianhang LIU, Xuerong CUI. A Puncturing Algorithm of Polar Code Based on Gaussian Approximation[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3149-3155. doi: 10.11999/JEIT201007

A Puncturing Algorithm of Polar Code Based on Gaussian Approximation

doi: 10.11999/JEIT201007
Funds:  The National Key R&D Program of China (2017YFC1405203), The National Natural Science Foundation of China (61972417, 61902431, 91938204), The Fundamental Research Funds for the Central Universities (19CX05003A-4)
  • Received Date: 2020-11-30
  • Rev Recd Date: 2021-06-11
  • Available Online: 2021-06-24
  • Publish Date: 2021-11-23
  • The influence of channel construction process on the algorithm performance is not considered in the existing polar code puncturing algorithms. To solve this problem, a Puncturing algorithm of Polar Code based on Gaussian Approximation (GAPPC) is proposed. Firstly, using Gaussian approximation for channel construction of polar code and analyzing the relationship between Gaussian approximation and puncturing algorithm, the modified Gaussian approximation function is derived to reduce the output value of channel construction with introduced Gaussian correction factors. Then the ordered channel reliability set is obtained by ordering the polarization subchannels under the channel construction with the modified Gaussian approximation function. Finally, the mapping rule is determined according to the relationship of channel capacity, and the puncturing bit set and frozen bit set are selected so that the puncturing polar code is completed. Experimental results show that the frame error rate and bit error rate are significantly reduced under different code lengths and bit rates.
  • loading
  • [1]
    ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379
    [2]
    刘建航, 何怡静, 李世宝, 等. 基于预译码的极化码最大似然简化连续消除译码算法[J]. 电子与信息学报, 2019, 41(4): 959–966. doi: 10.11999/JEIT180324

    LIU Jianhang, HE Yijing, LI Shibao, et al. Pre-decoding based maximum-likelihood simplified successive-cancellation decoding of polar codes[J]. Journal of Electronics &Information Technology, 2019, 41(4): 959–966. doi: 10.11999/JEIT180324
    [3]
    王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716

    WANG Qiong, LUO Yajie, and LI Sifang. Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
    [4]
    ESLAMI A and PISHRO-NIK H. A practical approach to polar codes[C]. 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), St. Petersburg, Russia, 2011: 16–20. doi: 10.1109/ISIT.2011.6033837.
    [5]
    SHIN D M, LIM S C, and YANG K. Design of length-compatible polar codes based on the reduction of polarizing matrices[J]. IEEE Transactions on Communications, 2013, 61(7): 2593–2599. doi: 10.1109/TCOMM.2013.052013.120543
    [6]
    NIU Kai, CHEN Kai, and LIN Jiaru. Beyond turbo codes: Rate-compatible punctured polar codes[C]. IEEE International Conference on Communications (ICC), Budapest, Hungary, 2013: 3423–3427. doi: 10.1109/ICC.2013.6655078.
    [7]
    NIU Kai, DAI Jincheng, CHEN Kai, et al. Rate-compatible punctured polar codes: Optimal construction based on polar spectra[EB/OL]. https://arxiv.org/pdf/1612.01352, 2016.
    [8]
    LIU Wei, WANG Yue, LI Ao, et al. An improved puncturing scheme for polar codes[C]. 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 2020: 154–158. doi: 10.1109/IWCMC48107.2020.9148522.
    [9]
    HANIF M A and VAFI S. A modified approach to punctured product polar codes[J]. Journal of Telecommunications and Information Technology, 2019, 3: 63–69. doi: 10.26636/jtit.2019.132219
    [10]
    JANG M, AHN S K, JEONG H, et al. Rate matching for polar codes based on binary domination[J]. IEEE Transactions on Communications, 2019, 67(10): 6668–6681. doi: 10.1109/TCOMM.2019.2930502
    [11]
    HONG S N and JEONG M O. An efficient construction of rate-compatible punctured polar (RCPP) codes using hierarchical puncturing[J]. IEEE Transactions on Communications, 2018, 66(11): 5041–5052. doi: 10.1109/TCOMM.2018.2854183
    [12]
    ZHAO Jianhan, ZHANG Wei, LIU Yanyan, et al. A rate-matching concatenation scheme of polar codes with outer reed-Solomon codes[J]. IEEE Wireless Communications Letters, 2021, 10(3): 459–463. doi: 10.1109/LWC.2020.3033850
    [13]
    ZHANG Liang, ZHANG Zhaoyang, WANG Xianbin, et al. On the puncturing patterns for punctured polar codes[C]. 2014 IEEE International Symposium on Information Theory (ISIT), Honolulu, USA, 2014: 121–125. doi: 10.1109/ISIT.2014.6874807.
    [14]
    BIOGLIO V, GABRY F, and LAND I. Low-complexity puncturing and shortening of polar codes[C]. 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNCW.2017.7919040.
    [15]
    LI Liping, SONG Wei, and NIU Kai. Optimal puncturing of polar codes with a fixed information set[J]. IEEE Access, 2019, 7: 65965–65972. doi: 10.1109/ACCESS.2019.2918346
    [16]
    WU Daolong, LI Ying, and SUN Yue. Construction and block error rate analysis of polar codes over AWGN channel based on Gaussian approximation[J]. IEEE Communications Letters, 2014, 18(7): 1099–1102. doi: 10.1109/LCOMM.2014.2325811
    [17]
    TAL I and VARDY A. How to construct polar codes[J]. IEEE Transactions on Information Theory, 2013, 59(10): 6562–6582. doi: 10.1109/TIT.2013.2272694
    [18]
    CHUNG S Y, RICHARDSON T J, and URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657–670. doi: 10.1109/18.910580
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (989) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return