Citation: | Shibao LI, Xun GAO, Zhenwei DONG, Jianhang LIU, Xuerong CUI. A Puncturing Algorithm of Polar Code Based on Gaussian Approximation[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3149-3155. doi: 10.11999/JEIT201007 |
[1] |
ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379
|
[2] |
刘建航, 何怡静, 李世宝, 等. 基于预译码的极化码最大似然简化连续消除译码算法[J]. 电子与信息学报, 2019, 41(4): 959–966. doi: 10.11999/JEIT180324
LIU Jianhang, HE Yijing, LI Shibao, et al. Pre-decoding based maximum-likelihood simplified successive-cancellation decoding of polar codes[J]. Journal of Electronics &Information Technology, 2019, 41(4): 959–966. doi: 10.11999/JEIT180324
|
[3] |
王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
WANG Qiong, LUO Yajie, and LI Sifang. Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
|
[4] |
ESLAMI A and PISHRO-NIK H. A practical approach to polar codes[C]. 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), St. Petersburg, Russia, 2011: 16–20. doi: 10.1109/ISIT.2011.6033837.
|
[5] |
SHIN D M, LIM S C, and YANG K. Design of length-compatible polar codes based on the reduction of polarizing matrices[J]. IEEE Transactions on Communications, 2013, 61(7): 2593–2599. doi: 10.1109/TCOMM.2013.052013.120543
|
[6] |
NIU Kai, CHEN Kai, and LIN Jiaru. Beyond turbo codes: Rate-compatible punctured polar codes[C]. IEEE International Conference on Communications (ICC), Budapest, Hungary, 2013: 3423–3427. doi: 10.1109/ICC.2013.6655078.
|
[7] |
NIU Kai, DAI Jincheng, CHEN Kai, et al. Rate-compatible punctured polar codes: Optimal construction based on polar spectra[EB/OL]. https://arxiv.org/pdf/1612.01352, 2016.
|
[8] |
LIU Wei, WANG Yue, LI Ao, et al. An improved puncturing scheme for polar codes[C]. 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 2020: 154–158. doi: 10.1109/IWCMC48107.2020.9148522.
|
[9] |
HANIF M A and VAFI S. A modified approach to punctured product polar codes[J]. Journal of Telecommunications and Information Technology, 2019, 3: 63–69. doi: 10.26636/jtit.2019.132219
|
[10] |
JANG M, AHN S K, JEONG H, et al. Rate matching for polar codes based on binary domination[J]. IEEE Transactions on Communications, 2019, 67(10): 6668–6681. doi: 10.1109/TCOMM.2019.2930502
|
[11] |
HONG S N and JEONG M O. An efficient construction of rate-compatible punctured polar (RCPP) codes using hierarchical puncturing[J]. IEEE Transactions on Communications, 2018, 66(11): 5041–5052. doi: 10.1109/TCOMM.2018.2854183
|
[12] |
ZHAO Jianhan, ZHANG Wei, LIU Yanyan, et al. A rate-matching concatenation scheme of polar codes with outer reed-Solomon codes[J]. IEEE Wireless Communications Letters, 2021, 10(3): 459–463. doi: 10.1109/LWC.2020.3033850
|
[13] |
ZHANG Liang, ZHANG Zhaoyang, WANG Xianbin, et al. On the puncturing patterns for punctured polar codes[C]. 2014 IEEE International Symposium on Information Theory (ISIT), Honolulu, USA, 2014: 121–125. doi: 10.1109/ISIT.2014.6874807.
|
[14] |
BIOGLIO V, GABRY F, and LAND I. Low-complexity puncturing and shortening of polar codes[C]. 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNCW.2017.7919040.
|
[15] |
LI Liping, SONG Wei, and NIU Kai. Optimal puncturing of polar codes with a fixed information set[J]. IEEE Access, 2019, 7: 65965–65972. doi: 10.1109/ACCESS.2019.2918346
|
[16] |
WU Daolong, LI Ying, and SUN Yue. Construction and block error rate analysis of polar codes over AWGN channel based on Gaussian approximation[J]. IEEE Communications Letters, 2014, 18(7): 1099–1102. doi: 10.1109/LCOMM.2014.2325811
|
[17] |
TAL I and VARDY A. How to construct polar codes[J]. IEEE Transactions on Information Theory, 2013, 59(10): 6562–6582. doi: 10.1109/TIT.2013.2272694
|
[18] |
CHUNG S Y, RICHARDSON T J, and URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657–670. doi: 10.1109/18.910580
|