Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Guanghua GU, Wenhua HUO, Mingyue SU, Hao FU. Asymmetric Supervised Deep Discrete Hashing Based Image Retrieval[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3530-3537. doi: 10.11999/JEIT200988
Citation: Guanghua GU, Wenhua HUO, Mingyue SU, Hao FU. Asymmetric Supervised Deep Discrete Hashing Based Image Retrieval[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3530-3537. doi: 10.11999/JEIT200988

Asymmetric Supervised Deep Discrete Hashing Based Image Retrieval

doi: 10.11999/JEIT200988
Funds:  The National Natural Science Foundation of China (62072394), The Natural Science Foundation of Hebei Province (F2021203019)
  • Received Date: 2020-11-23
  • Accepted Date: 2021-11-05
  • Rev Recd Date: 2021-10-25
  • Available Online: 2021-11-09
  • Publish Date: 2021-12-21
  • Hashing is widely used for image retrieval tasks. In view of the limitations of existing deep supervised hashing methods, a new Asymmetric Supervised Deep Discrete Hashing (ASDDH) method is proposed to maintain the semantic structure between different categories and generate binary codes. Firstly, a deep network is used to extract image features and reveal the similarity between each pair of images according to their semantic labels. To enhance the similarity between binary codes and ensure the retention of multi-label semantics, this paper designs an asymmetric hashing method that utilizes a multi-label binary code mapping to make the hash codes have multi-label semantic information. In addition, the bit balance of the binary code is introduced to balance each bit, which encourages the number of -1 and +1 to be approximately similar among all training samples. Experimental results on two benchmark datasets show that the proposed method is superior to other methods in image retrieval.
  • loading
  • [1]
    SHEN Fumin, ZHOU Xiang, YANG Yang, et al. A fast optimization method for general binary code learning[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5610–5621. doi: 10.1109/TIP.2016.2612883
    [2]
    QIANG Haopeng, WAN Yuan, XIANG Lun, et al. Deep semantic similarity adversarial hashing for cross-modal retrieval[J]. Neurocomputing, 2020, 400: 24–33. doi: 10.1016/j.neucom.2020.03.032
    [3]
    彭天强, 栗芳. 基于深度卷积神经网络和二进制哈希学习的图像检索方法[J]. 电子与信息学报, 2016, 38(8): 2068–2075. doi: 10.11999/JEIT151346

    PENG Tianqiang and LI Fang. Image retrieval based on deep convolutional neural networks and binary hashing learning[J]. Journal of Electronics &Information Technology, 2016, 38(8): 2068–2075. doi: 10.11999/JEIT151346
    [4]
    DATAR M, IMMORLICA N, INDYK P, et al Locality-sensitive hashing scheme based on p-stable distributions[C]. Proceedings of the 20th Annual Symposium on Computational Geometry, New York, USA, 2004: 253–262. doi: 10.1145/997817.997857.
    [5]
    GONG Yunchao and LAZEBNIK S. Iterative quantization: A procrustean approach to learning binary codes[C]. Proceedings of CVPR 2011, Colorado Springs, USA, 2011: 817–824. doi: 10.1109/CVPR.2011.5995432.
    [6]
    LIU Wei, MU Cun, SANJIV K, et al. Discrete graph hashing[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 3419–3427.
    [7]
    LU Xiaoqiang, ZHENG Xiangtao, and LI Xuelong. Latent semantic minimal hashing for image retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(1): 355–368. doi: 10.1109/TIP.2016.2627801
    [8]
    DAI Bo, GUO Ruiqi, KUMAR S, et al. Stochastic generative hashing[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 913–922.
    [9]
    LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C]. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2074–2081. doi: 10.1109/CVPR.2012.6247912.
    [10]
    SHEN Fumin, SHEN Chunhua, LIU Wei, et al. Supervised discrete hashing[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 37–45. doi: 10.1109/CVPR.2015.7298598.
    [11]
    SHI Xiaoshuang, XING Fuyong, XU Kaidi, et al. Asymmetric discrete graph hashing[C]. Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 2541–2547.
    [12]
    陈昌红, 彭腾飞, 干宗良. 基于深度哈希算法的极光图像分类与检索方法[J]. 电子与信息学报, 2020, 42(12): 3029–3036. doi: 10.11999/JEIT190984

    CHEN Changhong, PENG Tengfei, and GAN Zongliang. Aurora image classification and retrieval method based on deep hashing algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(12): 3029–3036. doi: 10.11999/JEIT190984
    [13]
    LI Wujun, WANG Sheng, and KANG Wangcheng. Feature learning based deep supervised hashing with pairwise labels[C]. Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, USA, 2016: 1711–1717.
    [14]
    GUI Jie, LIU Tongliang, SUN Zhenan, et al. Fast supervised discrete hashing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 490–496. doi: 10.1109/TPAMI.2017.2678475
    [15]
    JIANG Qingyuan, CUI Xue, and LI Wujun. Deep discrete supervised hashing[J]. IEEE Transactions on Image Processing, 2018, 27(12): 5996–6009. doi: 10.1109/TIP.2018.2864894
    [16]
    MA Lei, LI Hongliang, WU Qingbo, et al. Multi-task learning for deep semantic hashing[C]. Proceedings of 2018 IEEE Visual Communications and Image Processing, Taichung, China, 2018: 1–4. doi: 10.1109/VCIP.2018.8698627.
    [17]
    YANG Zhan, RAYMOND O I, SUN Wuqing, et al. Asymmetric deep semantic quantization for image retrieval[J]. IEEE Access, 2019, 7: 72684–72695. doi: 10.1109/ACCESS.2019.2920712
    [18]
    MOHAMMAD N and FLEET D J. Minimal loss hashing for compact binary codes[C]. Proceedings of the 28th International Conference on Machine Learning, Bellevue, USA, 2011: 353–360.
    [19]
    WEISS Y, TORRALBA A, and FERGUS R. Spectral hashing[C]. Proceedings of the 21st International Conference on Neural Information Processing Systems, Vancouver, Canada, 2008: 1753–1760. doi: 10.5555/2981780.2981999.
    [20]
    WANG Jun, KUMAR S, and CHANG S F. Sequential projection learning for hashing with compact codes[C]. Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 2010: 1127–1134.
    [21]
    LIN Guosheng, SHEN Chunhua, SHI Qinfeng, et al. Fast supervised hashing with decision trees for high-dimensional data[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1971–1978. doi: 10.1109/CVPR.2014.253.
    [22]
    ZHANG Peichao, ZHANG Wei, LI Wujun, et al. Supervised hashing with latent factor models[C]. Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Gold Coast, Australia, 2014: 173–182. doi: 10.1145/2600428.2609600.
    [23]
    CAO Yue, LONG Mingsheng, WANG Jianmin, et al. Deep quantization network for efficient image retrieval[C]. Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 3457–3463.
    [24]
    ZHU Han, LONG Mingsheng, WANG Jianmin, et al. Deep hashing network for efficient similarity retrieval[C]. Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 2415–2421.
    [25]
    XIA Rongkai, PAN Yan, LAI Hanjiang, et al. Supervised hashing for image retrieval via image representation learning[C]. Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, 2014: 2156–2162.
    [26]
    LAI Hanjiang, PAN Yan, LIU Ye, et al. Simultaneous feature learning and hash coding with deep neural networks[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3270–3278. doi: 10.1109/CVPR.2015.7298947.
    [27]
    WANG Xiaofang, SHI Yi, and KITANI K M. Deep supervised hashing with triplet labels[C]. Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, 2016: 70–84. doi: 10.1007/978-3-319-54181-5_5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (766) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return