Citation: | Hongyan WANG, Xiyang XUE, Xiaofeng YANG, Zumin WANG. Joint Design of Millimeter-wave Radar Waveform Parameters and Receiving Weight under Resolution Constraints[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3201-3210. doi: 10.11999/JEIT200978 |
[1] |
ZHANG Cheng, CAO Mengde, GONG Yuqin, et al. Calibration of motional frequency spread for wide-band FMCW automotive millimeter-wave radar[J]. IEEE Access, 2020, 8: 14355–14366. doi: 10.1109/ACCESS.2020.2966222
|
[2] |
LI Xin, TAO Xiaowen, ZHU Bing, et al. Research on a simulation method of the millimeter wave radar virtual test environment for intelligent driving[J]. Sensors, 2020, 20(7): 1929. doi: 10.3390/s20071929
|
[3] |
ZHANG Xiaowen, WANG Kaizhi, and LIU Xingzhao. Adaptive waveform optimization design for target detection in cognitive radar[J]. Journal of Applied Remote Sensing, 2017, 11(1): 015024. doi: 10.1117/1.JRS.11.015024
|
[4] |
XU Huaping, ZHANG Jiawei, LIU Wei, et al. High-resolution radar waveform design based on target information maximization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3577–3587. doi: 10.1109/TAES.2020.2976085
|
[5] |
BILIK I, LONGMAN O, VILLEVAL S, et al. The rise of radar for autonomous vehicles: Signal processing solutions and future research directions[J]. IEEE Signal Processing Magazine, 2019, 36(5): 20–31. doi: 10.1109/MSP.2019.2926573
|
[6] |
STOVE A G. Linear FMCW radar techniques[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(5): 343–350. doi: 10.1049/ip-f-2.1992.0048
|
[7] |
ZENG Tao, CHANG Shaoqiang, FAN Huayu, et al. Design and processing of a novel chaos-based stepped frequency synthesized wideband radar signal[J]. Sensors (Basel)
|
[8] |
ROHLING H and MOLLER C. Radar waveform for automotive radar systems and applications[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–4. doi: 10.1109/RADAR.2008.4721121.
|
[9] |
NGUYEN Q, PARK M, KIM Y, et al. 77 GHz waveform generator with multiple frequency shift keying modulation for multi-target detection automotive radar applications[J]. Electronics Letters, 2015, 51(8): 595–596. doi: 10.1049/el.2015.0092
|
[10] |
KRONAUGE M and ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. doi: 10.1109/TAES.2014.120813
|
[11] |
TAGHAVI I, SABAHI M F, and PARVARESH F. High resolution compressed sensing radar using difference set codes[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 136–148. doi: 10.1109/TSP.2018.2878545
|
[12] |
HYUN E and LEE J H. Waveform design with dual ramp-sequence for high-resolution range-velocity FMCW radar[J]. Elektronika Ir Elektrotechnika, 2016, 22(4): 46.
|
[13] |
KIM W, CHO H, KIM J, et al. YOLO-based simultaneous target detection and classification in automotive FMCW radar system[J]. Sensors, 2020, 20(10): 2897. doi: 10.3390/S20102897
|
[14] |
WANG Shuangling, HE Qian, and HE Zishu. LFM-based waveform design for cognitive MIMO radar with constrained bandwidth[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 89. doi: 10.1186/1687-6180-2540-89
|
[15] |
PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914
|
[16] |
郝天铎, 周青松, 孙从易, 等. 非准确先验知识下认知雷达低峰均比稳健波形设计[J]. 电子与信息学报, 2018, 40(3): 532–540. doi: 10.11999/JEIT170560
HAO Tianduo, ZHOU Qingsong, SUN Congyi, et al. Low-PAR robust waveform design for cognitive radar with imprecise prior knowledge[J]. Journal of Electronics &Information Technology, 2018, 40(3): 532–540. doi: 10.11999/JEIT170560
|
[17] |
WANG Hongyan and PEI Bingnan. Robust waveform design for MIMO-STAP in the case of imperfect clutter prior knowledge[J]. Journal of Signal Processing, 2015, 31(11): 1418–1424. doi: 10.1007/s00034-015-0116-3
|
[18] |
PIOTROWSKY L, JAESCHKE T, KUEPPERS S, et al. Enabling high accuracy distance measurements with FMCW radar sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 5360–5371. doi: 10.1109/TMTT.2019.2930504
|
[19] |
WON Y S, SHIN D, JUNG S, et al. Method to improve degraded range resolution due to non-ideal factors in FMCW radar[J]. IEICE Electronics Express, 2019, 16(1): 20180924. doi: 10.1587/elex.15.20180924
|
[20] |
HAKOBYAN G and YANG Bin. High-performance automotive radar: A review of signal processing algorithms and modulation schemes[J]. IEEE Signal Processing Magazine, 2019, 36(5): 32–44. doi: 10.1109/MSP.2019.2911722
|
[21] |
IVANOV S I, KUPTSOV V D, and FEDOTOV A A. The signal processing algorithm of automotive FMCW radars with an extended range of speed estimation[J]. Journal of Physics: Conference Series, 2019, 1236: 012081. doi: 10.1088/1742-6596/1236/1/012081
|
[22] |
DATTA B N. Numerical Linear Algebra and Applications[M]. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2010.
|
[23] |
李慧, 赵永波, 程增飞. 基于线性调频时宽的MIMO雷达正交波形设计[J]. 电子与信息学报, 2018, 40(5): 1151–1158. doi: 10.11999/JEIT170426
LI Hui, ZHAO Yongbo, and CHENG Zengfei. MIMO radar orthogonal waveform set design based on chirp durations[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1151–1158. doi: 10.11999/JEIT170426
|