Citation: | Liang HAN, Ting YANG, Xiujuan PU, Qian HUANG. Method on Alzheimer’s Disease Classification Utilizing Fuzzy Logic Feature Selection and Heterogeneous Ensemble Learning[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3319-3326. doi: 10.11999/JEIT200963 |
[1] |
LEANDROU S, PETROUDI S, KYRIACOU P A, et al. Quantitative MRI brain studies in mild cognitive impairment and Alzheimer’s disease: A methodological review[J]. IEEE Reviews in Biomedical Engineering, 2018, 11: 97–111. doi: 10.1109/rbme.2018.2796598
|
[2] |
BASKAR D, JAYANTHI V S, and JAYANTHI A N. An efficient classification approach for detection of Alzheimer’s disease from biomedical imaging modalities[J]. Multimedia Tools and Applications, 2019, 78(10): 12883–12915. doi: 10.1007/s11042-018-6287-8
|
[3] |
ADANI G, FILIPPINI T, GARUTI C, et al. Environmental risk factors for early-onset Alzheimer’s dementia and frontotemporal dementia: A case-control study in northern Italy[J]. International Journal of Environmental Research, 2020, 17(21): 7941. doi: 10.3390/ijerph17217941
|
[4] |
BYEON H. A prediction model for mild cognitive impairment using random forests[J]. International Journal of Advanced Computer Science and Applications (IJACSA)
|
[5] |
NORI V S, HANE C A, CROWN W H, et al. Machine learning models to predict onset of dementia: A label learning approach[J]. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 2019, 5(1): 918–925. doi: 10.1016/j.trci.2019.10.006
|
[6] |
DYRBA M, BARKHOF F, FELLGIEBEL A, et al. Predicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data[J]. Journal of Neuroimaging, 2015, 25(5): 738–747. doi: 10.1111/jon.12214
|
[7] |
IERACITANO C, MAMMONE N, HUSSAIN A, et al. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia[J]. Neural Networks, 2020, 123: 176–190. doi: 10.1016/j.neunet.2019.12.006
|
[8] |
PHAM K, KIM D, PARK S, et al. Ensemble learning-based classification models for slope stability analysis[J]. CATENA, 2021, 196: 104886. doi: 10.1016/j.catena.2020.104886
|
[9] |
MA J, CHEN S, and XU Y. Fuzzy logic from the viewpoint of machine intelligence[J]. Fuzzy Sets and Systems, 2006, 157(5): 628–634. doi: 10.1016/j.fss.2005.10.008
|
[10] |
褚征, 于炯. 基于随机森林的流处理检查点性能预测[J]. 电子与信息学报, 2020, 42(6): 1452–1459. doi: 10.11999/JEIT190552
CHU Zheng and YU Jiong. Performance prediction based on random forest for the stream processing checkpoint[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1452–1459. doi: 10.11999/JEIT190552
|
[11] |
钱亚冠, 卢红波, 纪守领, 等. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777
QIAN Yaguan, LU Hongbo, JI Shouling, et al. Adversarial example generation based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777
|
[12] |
BAGUI S, DEVULAPALLI K, and JOHN S. MapReduce implementation of a multinomial and mixed naive Bayes classifier[J]. International Journal of Intelligent Information Technologies (IJⅡT)
|
[13] |
KHAIRALLA M A, NING X, AL-JALLAD N T, et al. Short-term forecasting for energy consumption through stacking heterogeneous ensemble learning model[J]. Energies, 2018, 11(6): 1605. doi: 10.3390/en11061605
|
[14] |
MARINESCU R V, OXTOBY N P, YOUNG A L, et al. TADPOLE challenge: Prediction of longitudinal evolution in Alzheimer’s disease[J]. arXiv: 1805.03909v2, 2018.
|
[15] |
ADNI. Cross-sectional FreeSurfer (6.0)[EB/OL]. https://adni.bitbucket.io/reference/ucsffsx6.html, 2020.
|