Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Liang HAN, Ting YANG, Xiujuan PU, Qian HUANG. Method on Alzheimer’s Disease Classification Utilizing Fuzzy Logic Feature Selection and Heterogeneous Ensemble Learning[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3319-3326. doi: 10.11999/JEIT200963
Citation: Liang HAN, Ting YANG, Xiujuan PU, Qian HUANG. Method on Alzheimer’s Disease Classification Utilizing Fuzzy Logic Feature Selection and Heterogeneous Ensemble Learning[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3319-3326. doi: 10.11999/JEIT200963

Method on Alzheimer’s Disease Classification Utilizing Fuzzy Logic Feature Selection and Heterogeneous Ensemble Learning

doi: 10.11999/JEIT200963
Funds:  The Natural Science Foundation of Chongqing (cstc2016jcyjA0376)
  • Received Date: 2020-11-10
  • Rev Recd Date: 2021-01-31
  • Available Online: 2021-03-01
  • Publish Date: 2021-11-23
  • Early diagnosis of dementia is critical for timely treatment and intervention. Alzheimer’s Disease(AD) classification is an effective method on identifying AD at its early stage. In this paper, a feature selection method using improved Gauss fuzzy logic is proposed. Firstly, the normalized feature importance scores are calculated utilizing mutual information and variance analysis respectively. Then the final feature importance score is obtained by using improved Gauss fuzzy logic. At last, the features for AD classification are selected in accordance with the feature importance score. Furthermore, the heterogeneous ensemble classifier is constructed to classify AD patient utilizing selected features, which using logistic regression, random forest, LightGBM, support vector machine and depth feedforward network as primary classifier and multinomial naive Bayes classifier as secondary classifier. The proposed AD classification method is evaluated on the TADPOLE dataset. The experimental results show that the proposed feature selection method is effective and the integrated classifier based on Bayesian fusion is better than other conventional classification model on AD classification using the proposed feature selection method.
  • loading
  • [1]
    LEANDROU S, PETROUDI S, KYRIACOU P A, et al. Quantitative MRI brain studies in mild cognitive impairment and Alzheimer’s disease: A methodological review[J]. IEEE Reviews in Biomedical Engineering, 2018, 11: 97–111. doi: 10.1109/rbme.2018.2796598
    [2]
    BASKAR D, JAYANTHI V S, and JAYANTHI A N. An efficient classification approach for detection of Alzheimer’s disease from biomedical imaging modalities[J]. Multimedia Tools and Applications, 2019, 78(10): 12883–12915. doi: 10.1007/s11042-018-6287-8
    [3]
    ADANI G, FILIPPINI T, GARUTI C, et al. Environmental risk factors for early-onset Alzheimer’s dementia and frontotemporal dementia: A case-control study in northern Italy[J]. International Journal of Environmental Research, 2020, 17(21): 7941. doi: 10.3390/ijerph17217941
    [4]
    BYEON H. A prediction model for mild cognitive impairment using random forests[J]. International Journal of Advanced Computer Science and Applications (IJACSA) , 2015, 6(12): 8–12. doi: 10.14569/IJACSA.2015.061202
    [5]
    NORI V S, HANE C A, CROWN W H, et al. Machine learning models to predict onset of dementia: A label learning approach[J]. Alzheimers & Dementia: Translational Research & Clinical Interventions, 2019, 5(1): 918–925. doi: 10.1016/j.trci.2019.10.006
    [6]
    DYRBA M, BARKHOF F, FELLGIEBEL A, et al. Predicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data[J]. Journal of Neuroimaging, 2015, 25(5): 738–747. doi: 10.1111/jon.12214
    [7]
    IERACITANO C, MAMMONE N, HUSSAIN A, et al. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia[J]. Neural Networks, 2020, 123: 176–190. doi: 10.1016/j.neunet.2019.12.006
    [8]
    PHAM K, KIM D, PARK S, et al. Ensemble learning-based classification models for slope stability analysis[J]. CATENA, 2021, 196: 104886. doi: 10.1016/j.catena.2020.104886
    [9]
    MA J, CHEN S, and XU Y. Fuzzy logic from the viewpoint of machine intelligence[J]. Fuzzy Sets and Systems, 2006, 157(5): 628–634. doi: 10.1016/j.fss.2005.10.008
    [10]
    褚征, 于炯. 基于随机森林的流处理检查点性能预测[J]. 电子与信息学报, 2020, 42(6): 1452–1459. doi: 10.11999/JEIT190552

    CHU Zheng and YU Jiong. Performance prediction based on random forest for the stream processing checkpoint[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1452–1459. doi: 10.11999/JEIT190552
    [11]
    钱亚冠, 卢红波, 纪守领, 等. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777

    QIAN Yaguan, LU Hongbo, JI Shouling, et al. Adversarial example generation based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777
    [12]
    BAGUI S, DEVULAPALLI K, and JOHN S. MapReduce implementation of a multinomial and mixed naive Bayes classifier[J]. International Journal of Intelligent Information Technologies (IJⅡT) , 2020, 16(2): 1–23. doi: 10.4018/ijiit.2020040101
    [13]
    KHAIRALLA M A, NING X, AL-JALLAD N T, et al. Short-term forecasting for energy consumption through stacking heterogeneous ensemble learning model[J]. Energies, 2018, 11(6): 1605. doi: 10.3390/en11061605
    [14]
    MARINESCU R V, OXTOBY N P, YOUNG A L, et al. TADPOLE challenge: Prediction of longitudinal evolution in Alzheimer’s disease[J]. arXiv: 1805.03909v2, 2018.
    [15]
    ADNI. Cross-sectional FreeSurfer (6.0)[EB/OL]. https://adni.bitbucket.io/reference/ucsffsx6.html, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1399) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return