Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Yang WANG, Jian CUI, Xi LIAO, Yanzhi ZENG, Jie ZHANG. Research on Optical Wireless Orbital Angular Momentum Multiplexing System Based on Signal Detection[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3156-3165. doi: 10.11999/JEIT200955
Citation: Yang WANG, Jian CUI, Xi LIAO, Yanzhi ZENG, Jie ZHANG. Research on Optical Wireless Orbital Angular Momentum Multiplexing System Based on Signal Detection[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3156-3165. doi: 10.11999/JEIT200955

Research on Optical Wireless Orbital Angular Momentum Multiplexing System Based on Signal Detection

doi: 10.11999/JEIT200955
Funds:  The National Key R&D Program of China (2017YFE0118900), The National Natural Science Foundation of China (61801062), The Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0288), China Postdoctoral Science Foundation (2019M653826XB)
  • Received Date: 2020-11-06
  • Rev Recd Date: 2021-04-04
  • Available Online: 2021-04-25
  • Publish Date: 2021-11-23
  • The wireless communication technology based on Orbital Angular Momentum (OAM) can greatly improve the performance of the communication system under ideal transmission conditions. However, in the actual environment, atmospheric turbulence and aperture mismatch can cause crosstalk between OAM modes and increase the Bit Error Rate (BER). In order to reduce the BER of the optical wireless OAM multiplexing system in a complex environment, an OAM multiplexing communication system based on the Vertical Bell LAyered Space Time (VBLAST-OAM) code criterion under the scenario of atmospheric turbulence and the aperture mismatch of the transceiver is established firstly. Then, the system performance are analyzed based on the Ordered Successive Interference Cancellation (OSIC), the Markov Random Field Belief Propagation (MRF-BP) algorithm and the algorithm OAM-OSIC. Simulation results show that the algorithm proposed in this paper can reduce the BER of OAM systems effectively in complex environment and the MRF-BP has the best performance. Although OAM-OSIC is a suboptimal algorithm, it has a great advantage in the running cost.
  • loading
  • [1]
    郭忠义, 龚超凡, 刘洪郡, 等. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 190593. doi: 10.12086/OEE.2020.190593

    GUO Zhongyi, GONG Chaofan, LIU Hongjun, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 2020, 47(3): 190593. doi: 10.12086/OEE.2020.190593
    [2]
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PHYSREVA.45.8185
    [3]
    GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448
    [4]
    WANG Jian, YANG J Y, FAZAL I M, et al. Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signals over multiple orbital-angular-momentum modes[C]. 2011 37th European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1–3.
    [5]
    HUANG Hao, REN Yongxiong, YAN Yan, et al. Performance analysis of spectrally efficient free-space data link using spatially multiplexed orbital angular momentum beams[C]. SPIE 8647, Next-Generation Optical Communication: Components, Sub-Systems, and Systems II, San Francisco, USA, 2013: 864706.
    [6]
    WANG Jian, LI Shuhui, LI Chao, et al. Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over Pol-Muxed 22 orbital angular momentum (OAM) modes[C]. OFC 2014, San Francisco, USA, 2014: 1–3.
    [7]
    CHEN Rui, ZHOU Hong, MORETTI M, et al. Orbital angular momentum waves: Generation, detection, and emerging applications[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 840–868. doi: 10.1109/COMST.2019.2952453
    [8]
    廖希, 周晨虹, 王洋, 等. 面向无线通信的轨道角动量关键技术研究进展[J]. 电子与信息学报, 2020, 42(7): 1666–1677. doi: 10.11999/JEIT190372

    LIAO Xi, ZHOU Chenhong, WANG Yang, et al. A survey of orbital angular momentum in wireless communication[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1666–1677. doi: 10.11999/JEIT190372
    [9]
    邹丽, 王乐, 张士兵, 等. 基于波前校正的轨道角动量复用通信系统抗干扰研究[J]. 通信学报, 2015, 36(10): 76–84. doi: 10.11959/j.issn.1000-436x.2015264

    ZOU Li, WANG Le, ZHANG Shibing, et al. Compensation of orbital-angular-momentum multiplexed communication system with wavefront correction[J]. Journal on Communications, 2015, 36(10): 76–84. doi: 10.11959/j.issn.1000-436x.2015264
    [10]
    ZOU Li, WANG Le, ZHAO Shengmei, et al. Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system[J]. Chinese Physics B, 2016, 25(11): 114215. doi: 10.1088/1674-1056/25/11/114215
    [11]
    ZHAO Shengmei, WANG Le, ZOU Li, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing[J]. Optics Communications, 2016, 376: 92–98. doi: 10.1016/J.OPTCOM.2016.04.075
    [12]
    ZOU Li, WANG Le, and ZHAO Shengmei. Turbulence mitigation scheme based on spatial diversity in orbital-angular-momentum multiplexed system[J]. Optics Communications, 2017, 400: 123–127. doi: 10.1016/J.OPTCOM.2017.05.022
    [13]
    ZHANG Yan, WANG Ping, GUO Lixin, et al. Performance analysis of an OAM multiplexing-based MIMO FSO system over atmospheric turbulence using space-time coding with channel estimation[J]. Optics Express, 2017, 25(17): 19995–20011. doi: 10.1364/OE.25.019995
    [14]
    YOUSIF B B and ELSAYED E E. Performance enhancement of an orbital-angular-momentum-multiplexed free-space optical link under atmospheric turbulence effects using spatial-mode multiplexing and hybrid diversity based on adaptive MIMO equalization[J]. IEEE Access, 2019, 7: 84401–84412. doi: 10.1109/ACCESS.2019.2924531
    [15]
    WANG Lei, JIANG Fa, CHEN Mingkai, et al. Interference mitigation based on optimal modes selection strategy and CMA-MIMO equalization for OAM-MIMO communications[J]. IEEE Access, 2018, 6: 69850–69859. doi: 10.1109/ACCESS.2018.2880988
    [16]
    DEDO M I, WANG Zikun, GUO Kai, et al. Retrieving performances of vortex beams with GS algorithm after transmitting in different types of turbulences[J]. Applied Sciences, 2019, 9(11): 2269. doi: 10.3390/app9112269
    [17]
    AMHOUD E M, TRICHILI A, OOI B S, et al. OAM mode selection and space-time coding for atmospheric turbulence mitigation in FSO communication[J]. IEEE Access, 2019, 7: 88049–88057. doi: 10.1109/ACCESS.2019.2925680
    [18]
    SONG Haoqian, SONG Hao, ZHANG Runzhou, et al. Experimental mitigation of atmospheric turbulence effect using pre-signal combining for Uni- and Bi-directional free-space optical links with two 100-Gbit/s OAM-multiplexed channels[J]. Journal of Lightwave Technology, 2020, 38(1): 82–89. doi: 10.1109/JLT.2019.2933460
    [19]
    VASNETSOV M V, PAS'KO V A, and SOSKIN M S. Analysis of orbital angular momentum of a misaligned optical beam[J]. New Journal of Physics, 2005, 7(1): 46. doi: 10.1088/1367-2630/7/1/046
    [20]
    黎芳, 江月松, 唐华, 等. 光束偏移对轨道角动量信息传输系统的影响[J]. 物理学报, 2009, 58(9): 6202–6209. doi: 10.7498/APS.58.6202

    LI Fang, JIANG Yuesong, TANG Hua, et al. Influences of misaligned optical beam carrying orbital angular momentum on the information transfer[J]. Acta Physica Sinica, 2009, 58(9): 6202–6209. doi: 10.7498/APS.58.6202
    [21]
    KHALIGHI M A and UYSAL M. Survey on free space optical communication: A communication theory perspective[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 2231–2258. doi: 10.1109/COMST.2014.2329501
    [22]
    张明明. 离轴涡旋光束的传输特性研究[D]. [硕士论文], 南京理工大学, 2014. doi: 10.7666/d.Y2520561.

    ZHANG Mingming. Study on the propagation characteristics of off-axis vortex beams[D]. [Master dissertation] Nanjing University of Science and Technology, 2014. doi: 10.7666/d.Y2520561.
    [23]
    BRIANTCEV D, TRICHILI A, OOI B S, et al. Crosstalk suppression in structured light free-space optical communication[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1623–1631. doi: 10.1109/OJCOMS.2020.3029116
    [24]
    LOU Hanqiong, GE Xiaohu, and LI Qiang. The new purity and capacity models for the OAM-mmWave communication systems under atmospheric turbulence[J]. IEEE Access, 2019, 7: 129988–129996. doi: 10.1109/ACCESS.2019.2940691
    [25]
    HAZAN T and SHASHUA A. Norm-product belief propagation: Primal-dual message-passing for approximate inference[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6294–6316. doi: 10.1109/TIT.2010.2079014
    [26]
    WEISS Y, YANOVER C, and MELTZER T. MAP estimation, linear programming and belief propagation with convex free energies[J]. arXiv: 1206.5286, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (1101) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return