Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Yongjun XU, Bowen GU, Hao XIE, Qianbin CHEN. Energy Consumption Optimization Algorithm for Full-Duplex Relay-Assisted Mobile Edge Computing Systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3621-3628. doi: 10.11999/JEIT200937
Citation: Yongjun XU, Bowen GU, Hao XIE, Qianbin CHEN. Energy Consumption Optimization Algorithm for Full-Duplex Relay-Assisted Mobile Edge Computing Systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3621-3628. doi: 10.11999/JEIT200937

Energy Consumption Optimization Algorithm for Full-Duplex Relay-Assisted Mobile Edge Computing Systems

doi: 10.11999/JEIT200937
Funds:  The National Natural Science Foundation of China (61601071), The Natural Science Foundation of Chongqing (cstc2019jcyj-xfkxX0002), The Graduate ScientifiC Research Innovation Project of Chongqing (CYS20251, CYS20253)
  • Received Date: 2020-11-02
  • Accepted Date: 2021-11-05
  • Rev Recd Date: 2021-09-23
  • Available Online: 2021-11-09
  • Publish Date: 2021-12-21
  • In order to alleviate the pressure of terminal devices to deal with the big-data and low-delay services, a resource allocation algorithm is studied for mobile edge computing networks with full-duplex relays. Firstly, the constraints of the maximum task latency, the maximum computing ability of users, and the maximum transmit power of users and relays are considered for achieving total energy consumption minimization by jointly optimizing the relay selection and subcarrier allocation factor, user task offloading coefficient, and the transmission power of users and relays. Secondly, based on the alternating iteration method and the variable-substitution approach, the originally non-convex problem is decomposed into two convex subproblems, which are solved by using the interior-point method and Lagrange dual theory, respectively. Simulation results show that the proposed algorithm has low energy consumption.
  • loading
  • [1]
    LIU Yaqiong, PENG Mugen, SHOU Guochu, et al. Toward edge intelligence: Multiaccess edge computing for 5G and internet of things[J]. IEEE Internet of Things Journal, 2020, 7(8): 6722–6747. doi: 10.1109/JIOT.2020.3004500
    [2]
    MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [3]
    谢人超, 廉晓飞, 贾庆民, 等. 移动边缘计算卸载技术综述[J]. 通信学报, 2018, 39(11): 138–155. doi: 10.11959/j.issn.1000-436x.2018215

    XIE Renchao, LIAN Xiaofei, JIA Qingmin, et al. Survey on computation offloading in mobile edge computing[J]. Journal on Communications, 2018, 39(11): 138–155. doi: 10.11959/j.issn.1000-436x.2018215
    [4]
    李国权, 徐勇军, 陈前斌. 基于干扰效率多蜂窝异构无线网络最优基站选择及功率分配算法[J]. 电子与信息学报, 2020, 41(2): 957–964. doi: 10.11999/JEIT190419

    LI Guoquan, XU Yongjun, and CHEN Qianbin. Interference efficiency-based base station selection and power allocation algorithm for multi-cell heterogeneous wireless networks[J]. Journal of Electronics &Information Technology, 2020, 41(2): 957–964. doi: 10.11999/JEIT190419
    [5]
    ZHANG Jing, XIA Weiwei, YAN Feng, et al. Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing[J]. IEEE Access, 2018, 6: 19324–19337. doi: 10.1109/ACCESS.2018.2819690
    [6]
    WANG Jingrong, LIU Kaiyang, and PAN Jianping. Online UAV-mounted edge server dispatching for mobile-to-mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(2): 1375–1386. doi: 10.1109/JIOT.2019.2954798
    [7]
    QIAN Liping, FENG Anqi, HUANG Yupin, et al. Optimal SIC ordering and computation resource allocation in MEC-aware NOMA NB-IoT networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 2806–2816. doi: 10.1109/JIOT.2018.2875046
    [8]
    SUN Haijian, ZHOU Fuhui, and HU R Q. Joint offloading and computation energy efficiency maximization in a mobile edge computing system[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3052–3056. doi: 10.1109/tvt.2019.2893094
    [9]
    SONG Zhengyu, LIU Yuanwei, and SUN Xin. Joint radio and computational resource allocation for NOMA-based mobile edge computing in heterogeneous networks[J]. IEEE Communications Letters, 2018, 22(12): 2559–2562. doi: 10.1109/LCOMM.2018.2875984
    [10]
    REN Jinke, YU Guanding, HE Yinghui, et al. Collaborative cloud and edge computing for latency minimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 5031–5044. doi: 10.1109/TVT.2019.2904244
    [11]
    CHEN Xihan, CAI Yunlong, SHI Qingjiang, et al. Efficient resource allocation for relay-assisted computation offloading in mobile-edge computing[J]. IEEE Internet of Things Journal, 2020, 7(3): 2452–2468. doi: 10.1109/JIOT.2019.2957728
    [12]
    XIE Biyuan, ZHANG Qi, and QIN Jiayin. Joint optimization of cooperative communication and computation in two-way relay MEC systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4596–4600. doi: 10.1109/TVT.2020.2973292
    [13]
    LAN Yanwen, WANG Xiaoxiang, WANG Dongyu, et al. Mobile-edge computation offloading and resource allocation in heterogeneous wireless networks[C]. Proceedings of 2019 IEEE Wireless Communications and Networking Conference, Marrakesh, Morocco, 2019: 1–6. doi: 10.1109/WCNC.2019.8885793.
    [14]
    ALAM S, MARK J W, and SHEN X S. Relay selection and resource allocation for multi-user cooperative OFDMA networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2193–2205. doi: 10.1109/TWC.2013.032113.120652
    [15]
    WEN Dingzhu, YU Guanding, LI Rongpeng, et al. Results on energy- and spectral-efficiency tradeoff in cellular networks with full-duplex enabled base stations[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1494–1507. doi: 10.1109/TWC.2016.2647593
    [16]
    CHEN Lei, YU F R, JI Hong, et al. Distributed virtual resource allocation in small-cell networks with full-duplex self-backhauls and virtualization[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5410–5423. doi: 10.1109/TVT.2015.2469149
    [17]
    DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/mnsc.13.7.492
    [18]
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [19]
    HUANG Kaizhi and ZHANG Bo. Robust secure transmission for wireless information and power transfer in heterogeneous networks[J]. IET Communications, 2019, 13(4): 411–422. doi: 10.1049/iet-com.2018.5529
    [20]
    CROUZEIX J P and FERLAND J A. Algorithms for generalized fractional programming[J]. Mathematical Programming, 1991, 52(1/3): 191–207. doi: 10.1007/BF01582887
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (778) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return