Citation: | Shunpan LIANG, Wei LIU, Dianlong YOU, Zeqian LIU, Fuzhi ZHANG. Self-attention Capsule Network Rate Prediction with Review Quality[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3451-3458. doi: 10.11999/JEIT200932 |
[1] |
TAN Yunzhi, ZHANG Min, LIU Yiqun, et al. Rating-boosted latent topics: Understanding users and items with ratings and reviews[C]. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), New York, USA, 2016: 2640–2646.
|
[2] |
ZHANG Wei, YUAN Quan, HAN Jiawei, et al. Collaborative multi-level embedding learning from reviews for rating prediction[C]. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), New York, USA, 2016: 2986–2992.
|
[3] |
BLEI D, CARIN L, and DUNSON D. Probabilistic topic models[J]. IEEE Signal Processing Magazine, 2010, 27(6): 55–65. doi: 10.1109/MSP.2010.938079
|
[4] |
KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, USA, 2016: 233–240. doi: 10.1145/2959100.2959165.
|
[5] |
ZHENG Lei, NOROOZI V, and YU P S. Joint deep modeling of users and items using reviews for recommendation[C]. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, 2017: 425–434. doi: 10.1145/3018661.3018665.
|
[6] |
CHEN Chong, ZHANG Min, LIU Yiqun, et al. Neural attentional rating regression with review-level explanations[C]. Proceedings of the 2018 World Wide Web Conference, Lyon, Italy, 2018: 1583–1592. doi: 10.1145/3178876.3186070.
|
[7] |
LU Yichao, DONG Ruihai, and SMYTH B. Coevolutionary recommendation model: Mutual learning between ratings and reviews[C]. Proceedings of the 2018 World Wide Web Conference, Lyon, Italy, 2018: 773–782. doi: 10.1145/3178876.3186158.
|
[8] |
SABOUR S, FROSST N, and HINTON G. Dynamic routing between capsules[C]. NIPS, Los Angeles, USA, 2017: 3859–3869.
|
[9] |
ZHANG Ningyu, DENG Shumin, SUN Zhanling, et al. Attention-based capsule networks with dynamic routing for relation extraction[C]. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 986–992. doi: 10.18653/v1/d18-1120.
|
[10] |
ZHANG Min and GENG Guohua. Capsule networks with word-attention dynamic routing for cultural relics relation extraction[J]. IEEE Access, 2020, 8: 94236–94244. doi: 10.1109/ACCESS.2020.2995447
|
[11] |
ZHAO Wei, YE Jianbo, YANG Min, et al. Investigating capsule networks with dynamic routing for text classification[C]. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 3110–3119. doi: 10.18653/v1/D18-1350.
|
[12] |
KIM J, JANG S, PARK E, et al. Text classification using capsules[J]. Neurocomputing, 2020, 376: 214–221. doi: 10.1016/j.neucom.2019.10.033
|
[13] |
LI Chenliang, QUAN Cong, PENG Li, et al. A capsule network for recommendation and explaining what you like and dislike[C]. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 2019: 275–284. doi: 10.1145/3331184.3331216.
|
[14] |
LI Chao, LIU Zhiyuan, WU Mengmeng, et al. Multi-interest network with dynamic routing for recommendation at tmall[C]. The 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 2615–2623. doi: 10.1145/3357384.3357814.
|
[15] |
OLATUNJI I E, LI Xin, and LAM W. Context-aware helpfulness prediction for online product reviews[C]. 15th Asia Information Retrieval Societies Conference on Information Retrieval Technology, Hong Kong, China, 2019: 56–65. doi: 10.1007/978-3-030-42835-8_6.
|
[16] |
丁永刚, 李石君, 付星, 等. 面向时序感知的多类别商品方面情感分析推荐模型[J]. 电子与信息学报, 2018, 40(6): 1453–1460. doi: 10.11999/JEIT170938
DING Yonggang, LI Shijun, FU Xing, et al. Temporal-aware multi-category products recommendation model based on aspect-level sentiment analysis[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1453–1460. doi: 10.11999/JEIT170938
|
[17] |
KINGMA D P and BA L J. ADAM: A method for stochastic optimization[C]. International Conference on Learning Representations (ICLR), San Diego, USA, 2015: 1–15.
|
[18] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958. doi: 10.5555/2627435.2670313
|
[19] |
MCAULEY J, TARGETT C, SHI Qinfeng, et al. Image-based recommendations on styles and substitutes[C]. The 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, USA, 2015: 43–52. doi: 10.1145/2766462.2767755.
|
[20] |
SALAKHUTDINOV R and MNIH A. Probabilistic matrix factorization[C]. Proceedings of the 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1257–1264. doi: 10.5555/2981562.2981720.
|