Citation: | ZHU Danni, MENG Jin, HUANG Liyang, CUI Yancheng, YUAN Yuzhang, WANG Haitao. Simulation Research on a Compact High Power Microwave Source Based on Gyromagnetic Nonlinear Transmission Lines[J]. Journal of Electronics & Information Technology, 2022, 44(2): 737-744. doi: 10.11999/JEIT200912 |
[1] |
BRAGG J W B, DICKENS J C, and NEUBER A A. Ferrimagnetic nonlinear transmission lines as high-power microwave sources[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 232–237. doi: 10.1109/TPS.2012.2226169
|
[2] |
ROMANCHENKO I V and ROSTOV V V. Energy levels of oscillations in a nonlinear transmission line filled with saturated ferrite[J]. Technical Physics, 2010, 55(7): 1024–1027. doi: 10.1134/S1063784210070170
|
[3] |
ROMANCHENKO I V, ROSTOV V V, GUNIN A V, et al. High power microwave beam steering based on gyromagnetic nonlinear transmission lines[J]. Journal of Applied Physics, 2015, 117(21): 214907. doi: 10.1063/1.4922280
|
[4] |
ROSTOV V V, EL'CHANINOV A A, KLIMOV A I, et al. Phase control in parallel channels of shock-excited microwave nanosecond oscillators[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2735–2741. doi: 10.1109/TPS.2013.2270571
|
[5] |
ROSTOV V V, BYKOV N M, BYKOV D N, et al. Generation of subgigawatt RF pulses in nonlinear transmission lines[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2681–2685. doi: 10.1109/TPS.2010.2048722
|
[6] |
ROMANCHENKO I V, ROSTOV V V, GUBANOV V P, et al. Repetitive sub-gigawatt RF source based on gyromagnetic nonlinear transmission line[J]. Review of Scientific Instruments, 2012, 83(7): 074705. doi: 10.1063/1.4738641
|
[7] |
GUSEV A I, PEDOS M S, RUKIN S N, et al. Solid-state repetitive generator with a gyromagnetic nonlinear transmission line operating as a peak power amplifier[J]. Review of Scientific Instruments, 2017, 88(7): 074703. doi: 10.1063/1.4993732
|
[8] |
ULMASKULOV M R, PEDOS M S, RUKIN S N, et al. High repetition rate multi-channel source of high-power RF-modulated pulses[J]. Review of Scientific Instruments, 2015, 86(7): 074702. doi: 10.1063/1.4926458
|
[9] |
PRATHER W D, BAUM C E, TORRES R J, et al. Survey of worldwide high-power wideband capabilities[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 335–344. doi: 10.1109/TEMC.2004.831826
|
[10] |
REALE D V, PARSON J M, NEUBER A A, et al. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources[J]. Review of Scientific Instruments, 2016, 87(3): 034706. doi: 10.1063/1.4942246
|
[11] |
GUBANOV V P, GUNIN A V, KOVAL’CHUK O B, et al. Effective transformation of the energy of high-voltage pulses into high-frequency oscillations using a saturated-ferrite-loaded transmission line[J]. Technical Physics Letters, 2009, 35(7): 626–628. doi: 10.1134/S1063785009070116
|
[12] |
CHADWICK S J F, SEDDON N, and RUKIN S. A novel solid-state HPM source based on a gyromagnetic NLTL and SOS-based pulse generator[C]. 2011 IEEE Pulsed Power Conference, Chicago, America, 2011: 178–181.
|
[13] |
BRAGG J W B, SULLIVAN III W W, MAUCH D, et al. All solid-state high power microwave source with high repetition frequency[J]. Review of Scientific Instruments, 2013, 84(5): 054703. doi: 10.1063/1.4804196
|
[14] |
ROMANCHENKO I V, PRIPUTNEV P V, and ROSTOV V V. RF pulse formation dynamics in gyromagnetic nonlinear transmission lines[C]. Journal of Physics: Conference Series 5th International Congress on Energy Fluxes and Radiation Effects, Tomsk, Russia, 2017: 012034.
|
[15] |
廖勇, 徐刚, 谢平, 等. 非线性传输线数值模拟方法[J]. 强激光与粒子束, 2015, 27(8): 083001. doi: 10.11884/HPLPB201527.083001
LIAO Yong, XU Gang, XIE Ping, et al. Numerical simulation of non-linear transmission line[J]. High Power Laser and Particle Beams, 2015, 27(8): 083001. doi: 10.11884/HPLPB201527.083001
|
[16] |
谢平, 徐刚, 廖勇, 等. 非线性传输线产生射频脉冲原理研究[J]. 强激光与粒子束, 2014, 26(4): 043002. doi: 10.11884/HPLPB201426.043002
XIE Ping, XU Gang, LIAO Yong, et al. Research on nonlinear transmission line generating radio-frequency pulses[J]. High Power Laser and Particle Beams, 2014, 26(4): 043002. doi: 10.11884/HPLPB201426.043002
|
[17] |
廖勇, 张现福, 徐刚, 等. 非线性传输线高功率实验[J]. 强激光与粒子束, 2016, 28(5): 053007. doi: 10.11884/HPLPB201628.053007
LIAO Yong, ZHANG Xianfu, XU Gang, et al. High Power experiment of nonlinear transmission lines system[J]. High Power Laser and Particle Beams, 2016, 28(5): 053007. doi: 10.11884/HPLPB201628.053007
|
[18] |
TIE Weihao, MENG Cui, ZHAO Chengguang, et al. Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application[J]. Plasma Science and Technology, 2019, 21(9): 095503. doi: 10.1088/2058-6272/ab2626
|
[19] |
铁维昊, 赵程光, 孟萃, 等. 旋磁型非线性传输线调制脉冲特性数值分析[J]. 高电压技术, 2019, 45(1): 301–309. doi: 10.13336/j.1003-6520.hve.20181229028
TIE Weihao, ZHAO Chengguang, MENG Cui, et al. Numerical analysis on modulated RF pulse characteristics of gyro-magnetic nonlinear transmission line[J]. High Voltage Engineering, 2019, 45(1): 301–309. doi: 10.13336/j.1003-6520.hve.20181229028
|
[20] |
REALE D V, BRAGG J W B, GONSALVES N R, et al. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines[J]. Review of Scientific Instruments, 2014, 85(5): 054706. doi: 10.1063/1.4878339
|
[21] |
REALE D V. Coaxial ferrimagnetic based gyromagnetic nonlinear transmission lines as compact high power microwave sources[D]. [Ph. D. dissertation], Texas Tech University, 2013.
|
[22] |
KARELIN S Y, KRASOVITSKY V B, MAGDA I I, et al. RF Oscillations in a coaxial transmission line with a saturated ferrite: 2-D simulation and experiment[C]. 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), Odessa, Ukraine, 2016: 60–63.
|
[23] |
WEINER M and SILBER L. Pulse sharpening effects in ferrites[J]. IEEE Transactions on Magnetics, 1981, 17(4): 1472–1477. doi: 10.1109/TMAG.1981.1061243
|
[24] |
BRAGG J W B, DICKENS J C, and NEUBER A A. Material selection considerations for coaxial, ferrimagnetic-based nonlinear transmission lines[J]. Journal of Applied Physics, 2013, 113(6): 064904. doi: 10.1063/1.4792214
|
[25] |
DOLAN J E and BOLTON H R. Shock front development in ferrite-loaded coaxial lines with axial bias[J]. IEE Proceedings - Science, Measurement and Technology, 2000, 147(5): 237–242. doi: 10.1049/ip-smt:20000447
|
[26] |
ROSSI J O, YAMASAKI F S, SCHAMILOGLU E, et al. Operation analysis of a novel concept of RF source known as gyromagnetic line[C]. 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aguas de Lindoia, Brazil, 2017: 1–4.
|
[27] |
ROMANCHENKO I V, ROSTOV V V, GUNIN A V, et al. Gyromagnetic RF source for interdisciplinary research[J]. Review of Scientific Instruments, 2017, 88(2): 024703. doi: 10.1063/1.4975182
|