Citation: | Han HU, Nan BAO, Zhang LING, Le SHEN. Fair Energy Efficiency Scheduling in NOMA-Based Mobile Edge Computing[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3563-3570. doi: 10.11999/JEIT200898 |
[1] |
BARBERA M V, KOSTA S, MEI A, et al. To offload or not to offload? The bandwidth and energy costs of mobile cloud computing[C]. Proceedings - IEEE INFOCOM, Turin, Italy, 2013: 1285–1293. doi: 10.1109/INFCOM.2013.6566921.
|
[2] |
TAN L T, HU R Q, and HANZO L. Twin-timescale artificial intelligence aided mobility-aware edge caching and computing in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3086–3099. doi: 10.1109/TVT.2019.2893898
|
[3] |
TAN L T and HU R Q. Mobility-aware edge caching and computing in vehicle networks: A deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10190–10203. doi: 10.1109/TVT.2018.2867191
|
[4] |
HU Han, SONG Weiwei, WANG Qun, et al. Mobility-aware offloading and resource allocation in MEC-enabled IoT networks[C]. Proceedings of the 16th International Conference on Mobility, Sensing and Networking (MSN), Tokyo, Japan, 2020: 554–560. doi: 10.1109/MSN50589.2020.00092.
|
[5] |
ZHANG Yuan, DU Peng, WANG Jiang, et al. Resource scheduling for delay minimization in multi-server cellular edge computing systems[J]. IEEE Access, 2019, 7(99): 86265–86273. doi: 10.1109/ACCESS.2019.2924032
|
[6] |
CHEN Ying, ZHANG Ning, ZHANG Yongchao, et al. Energy efficient dynamic offloading in mobile edge computing for internet of things[J]. IEEE Transactions on Cloud Computing, 2021, 9(3): 1050–1060. doi: 10.1109/TCC.2019.2898657
|
[7] |
TRAN T X and POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856–868. doi: 10.1109/TVT.2018.2881191
|
[8] |
SUN Haijian, ZHOU Fuhui, and HU R Q. Joint offloading and computation energy efficiency maximization in a mobile edge computing system[J]. IEEE Transactions on Vehicular Technology, 2019, 8,68(3): 3052–3056. doi: 10.1109/TVT.2019.2893094
|
[9] |
YANG Zhaohui, PAN Cunhua, HOU Jiancao, et al. Efficient resource allocation for mobile-edge computing networks with NOMA: Completion time and energy minimization[J]. IEEE Transactions on Communications, 2019, 67(11): 7771–7784. doi: 10.1109/TCOMM.2019.2935717
|
[10] |
ZENG Ming, NGUYEN N P, DOBRE O A, et al. Delay minimization for NOMA-assisted MEC under power and energy constraints[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1657–1661. doi: 10.1109/LWC.2019.2934453
|
[11] |
PAN Yijin, CHEN Ming, YANG Zhaohui, et al. Energy-efficient NOMA-based mobile edge computing offloading[J]. IEEE Communications Letters, 2019, 23(2): 310–313. doi: 10.1109/LCOMM.2018.2882846
|
[12] |
PHAM Q V and HWANG W J. Fairness-aware spectral and energy efficiency in spectrum-sharing wireless networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10207–10219. doi: 10.1109/TVT.2017.2717926
|
[13] |
MO J and WALRAND J. Fair end-to-end window-based congestion control[J]. IEEE/ACM Transactions on Networking, 2000, 8(5): 556–567. doi: 10.1109/90.879343
|
[14] |
GUO Chongtao, ZHANG Yan, SHENG Min, et al. Alphaα-fair power allocation in spectrum-sharing networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3771–3777. doi: 10.1109/TVT.2015.2436068
|
[15] |
SCHWARZ S, MEHLFUHRER C, and RUPP M. Throughput maximizing multiuser scheduling with adjustable fairness[C]. IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011: 1–5. doi: 10.1109/icc.2011.5963489.
|
[16] |
YU Ye, BU Xiangyuan, YANG Kai, et al. Green large-scale fog computing resource allocation using joint benders decomposition, dinkelbach Algorithm, ADMM, and branch-and-bound[J]. IEEE Internet of Things Journal, 2019, 6(3): 4106–4117. doi: 10.1109/JIOT.2018.2875587
|
[17] |
WEI Zhiqiang, ZHAO Lou, GUO Jiajia, et al. Multi-beam NOMA for hybrid mmWave systems[J]. IEEE Transactions on Communications, 2019, 67(2): 1705–1719. doi: 10.1109/TCOMM.2018.2879930
|