Advanced Search
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Zhixin ZHAO, Wenting DAI, Xin CHEN, Shihua HE, Ping’an TAO. Deep Neural Network-based Reference Signal Reconstruction for Passive Radar with Orthogonal Frequency Division Multiplexing Waveform[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2735-2742. doi: 10.11999/JEIT200888
Citation: Zhixin ZHAO, Wenting DAI, Xin CHEN, Shihua HE, Ping’an TAO. Deep Neural Network-based Reference Signal Reconstruction for Passive Radar with Orthogonal Frequency Division Multiplexing Waveform[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2735-2742. doi: 10.11999/JEIT200888

Deep Neural Network-based Reference Signal Reconstruction for Passive Radar with Orthogonal Frequency Division Multiplexing Waveform

doi: 10.11999/JEIT200888
Funds:  The National Natural Science Foundation of China (61461030), The Natural Science Fund of Jiangxi Province (20202BAB202001)
  • Received Date: 2020-10-16
  • Rev Recd Date: 2021-06-12
  • Available Online: 2021-06-25
  • Publish Date: 2021-09-16
  • Considering the problem of obtaining the reference signal for passive radar with Orthogonal Frequency Division Multiplexing (OFDM) waveform, the reconstruction method based on "demodulation-remodulation" employs the waveform advantage to obtain a purer reference signal. On this basis, a Deep Neural Network (DNN) reconstruction method that combines OFDM demodulation, channel estimation, channel equalization, and constellation point inverse mapping is proposed to establish a DNN-based reference signal reconstruction scheme. This method can be used to adaptively and deeply excavate the mapping relationship between time-domain received symbols and transmission symbols through network learning, and implicitly estimate the channel response, thereby improving demodulation accuracy and reconstruction performance. Firstly, the acquisition of simulation data sets, the construction and training of DNN are studied in this paper.Then, the comparison between the DNN method and the traditional method about reference signal reconstruction performance is analyzed under the condition that the number of pilots is reduced, the cyclic prefix is removed, the symbol timing offset exists, the carrier frequency offset exists, the time domain windowing filter is performed on the high peak-to-average power ratio signal, and all the above parameters are superimposed. Finally, simulation results show the effectiveness of this method.
  • loading
  • [1]
    WELSCHEN S, LEUCHTMANN P, LEUTHOLD J, et al. Localization of micro unmanned aerial vehicles using digital audio broadcast signals[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
    [2]
    PŁOTKA M, MALANOWSKI M, SAMCZYŃSKI P, et al. Passive bistatic radar based on VHF DVB-T signal[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 596–600.
    [3]
    CHEN Geng, TIAN Bo, GONG Jian, et al. Passive radar channel estimation based on PN sequence of DTMB signal[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–4.
    [4]
    赵志欣, 周新华, 洪升, 等. 基于载波域自适应迭代滤波器的无源雷达多径杂波抑制方法[J]. 电子与信息学报, 2018, 40(12): 2841–2847. doi: 10.11999/JEIT180097

    ZHAO Zhixin, ZHOU Xinhua, HONG Sheng, et al. Multipath clutter rejection approach based on carrier domain adaptive iterative filter in passive bistatic radar[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2841–2847. doi: 10.11999/JEIT180097
    [5]
    万显荣, 刘玉琪, 程丰, 等. 基于信道分段平滑的外辐射源雷达非平稳杂波抑制方法[J]. 电子与信息学报, 2020, 42(1): 132–139. doi: 10.11999/JEIT190754

    WAN Xianrong, LIU Yuqi, CHENG Feng, et al. Nonstationary clutter suppression method for passive radar based on channel segmentation and smoothing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 132–139. doi: 10.11999/JEIT190754
    [6]
    WEN Jinfang, YI Jianxin, and WAN Xianrong. Sparse representation for target parameter estimation in CDR-based passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1024–1028. doi: 10.1109/LGRS.2020.2991743
    [7]
    吕晓德, 张汉良, 刘忠胜, 等. 基于LTE信号的外辐射源雷达同频基站干扰抑制方法研究[J]. 电子与信息学报, 2019, 41(9): 2123–2130. doi: 10.11999/JEIT180904

    LÜ Xiaode, ZHANG Hanliang, LIU Zhongsheng, et al. Research on co-channel base station interference suppression method of passive radar based on LTE signal[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2123–2130. doi: 10.11999/JEIT180904
    [8]
    ZHENG Xiaokun, JIANG Ting, and XUE Wenling. Improving passive radar target recognition using a convolution composite WiFi preamble[J]. IEEE Sensors Journal, 2020, 20(12): 6470–6477. doi: 10.1109/JSEN.2020.2974234
    [9]
    GAO Yongchan, LI Hongbin, and HIMED B. Joint transmit and receive beamforming for hybrid active–passive radar[J]. IEEE Signal Processing Letters, 2017, 24(6): 779–783. doi: 10.1109/LSP.2017.2692777
    [10]
    ZHANG Xun, YI Jianxin, WAN Xianrong, et al. Reference signal reconstruction under oversampling for DTMB-based passive radar[J]. IEEE Access, 2020, 8: 74024–74038. doi: 10.1109/ACCESS.2020.2986589
    [11]
    陈赓, 田波, 宫健, 等. 基于深度学习的DTMB外辐射源雷达参考信道估计[J]. 空军工程大学学报: 自然科学版, 2020, 21(2): 61–64. doi: 10.3969/j.issn.1009-3516.2020.02.009

    CHEN Geng, TIAN Bo, GONG Jian, et al. DTMB passive radar reference channel estimation based on deep learning[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 21(2): 61–64. doi: 10.3969/j.issn.1009-3516.2020.02.009
    [12]
    HA Changbin and SONG H K. Signal detection scheme based on adaptive ensemble deep learning model[J]. IEEE Access, 2018, 6: 21342–21349. doi: 10.1109/ACCESS.2018.2825463
    [13]
    YE Hao, LI G Y, and JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7(1): 114–117. doi: 10.1109/LWC.2017.2757490
    [14]
    CHENG Xing, LIU Dejun, ZHU Zhengyu, et al. A ResNet-DNN based channel estimation and equalization scheme in FBMC/OQAM systems[C]. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018: 1–5.
    [15]
    赵志欣, 万显荣, 谢锐, 等. 载波频偏对正交频分复用波形外辐射源雷达性能影响的研究[J]. 电子与信息学报, 2013, 35(4): 871–876. doi: 10.3724/SP.J.1146.2012.01011

    ZHAO Zhixin, WAN Xianrong, XIE Rui, et al. Impact of carrier frequency offset on passive bistatic radar with orthogonal frequency division multiplexing waveform[J]. Journal of Electronics &Information Technology, 2013, 35(4): 871–876. doi: 10.3724/SP.J.1146.2012.01011
    [16]
    KYÖSTI P, MEINILÄ J, HENTILÄ L, et al. IST-4-027756 WINNER II D1.1. 2 v1.2 WINNER II channel models[R]. 2007.
    [17]
    张秀艳, 刘珈池. 基于ZC序列的OFDM系统定时同步改进算法[J]. 吉林大学学报: 信息科学版, 2019, 37(6): 610–616. doi: 10.19292/j.cnki.jdxxp.2019.06.004

    ZHANG Xiuyan and LIU Jiachi. Improved timing synchronization algorithm for OFDM system based on ZC sequence[J]. Journal of Jilin University:Information Science Edition, 2019, 37(6): 610–616. doi: 10.19292/j.cnki.jdxxp.2019.06.004
    [18]
    LI Xiaodong and CIMINI L J. Effects of clipping and filtering on the performance of OFDM[J]. IEEE Communications Letters, 1998, 2(5): 131–133. doi: 10.1109/4234.673657
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (1061) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return