Citation: | Guomin ZHONG, Mingxuan SUN. Iterative Learning Identification for a Class of Wiener Nonlinear Time- Varying Systems[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2594-2600. doi: 10.11999/JEIT200882 |
[1] |
丁锋. 系统辨识新论[M]. 北京: 科学出版社, 2013: 37–38.
|
[2] |
GIRI F and BAI Erwei. Block-oriented Nonlinear System Identification[M]. London: Springer, 2010: 3–11. doi: 10.1007/978-1-84996-513-2_1.
|
[3] |
DING Feng, LIU Ximei, and LIU Manman. The recursive least squares identification algorithm for a class of wiener nonlinear systems[J]. Journal of the Franklin Institute, 2016, 353(7): 1518–1526. doi: 10.1016/j.jfranklin.2016.02.013
|
[4] |
JIN Xing, HUANG Biao, and SHOOK D S. Multiple model LPV approach to nonlinear process identification with EM algorithm[J]. Journal of Process Control, 2011, 21(1): 182–193. doi: 10.1016/j.jprocont.2010.11.008
|
[5] |
ZHOU Lincheng, LI Xiangli, and PAN Feng. Gradient-based iterative identification for MISO Wiener nonlinear systems: Application to a glutamate fermentation process[J]. Applied Mathematics Letters, 2013, 26(8): 886–892. doi: 10.1016/j.aml.2013.03.015
|
[6] |
PELCKMANS K. Minlip for the identification of monotone Wiener systems[J]. Automatica, 2011, 47(10): 2298–2305. doi: 10.1016/j.automatica.2011.08.026
|
[7] |
VÖRÖS J. Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities[J]. Systems & Control Letters, 2007, 56(2): 99–105. doi: 10.1016/j.sysconle.2006.08.001
|
[8] |
YU Feng, MAO Zhizhong, and HE Dakuo. Identification of time-varying Hammerstein-Wiener systems[J]. IEEE Access, 2020, 8: 136906–136916. doi: 10.1109/ACCESS.2020.3011608
|
[9] |
WANG Dongqing and DING Feng. Least squares based and gradient based iterative identification for Wiener nonlinear systems[J]. Signal Processing, 2011, 91(5): 1182–1189. doi: 10.1016/j.sigpro.2010.11.004
|
[10] |
HAGENBLAD A, LJUNG L, and WILLS A. Maximum likelihood identification of Wiener models[J]. Automatica, 2008, 44(11): 2697–2705. doi: 10.1016/j.automatica.2008.02.016
|
[11] |
HU Yuanbiao, LIU Baolin, ZHOU Qin, et al. Recursive extended least squares parameter estimation for wiener nonlinear systems with moving average noises[J]. Circuits, Systems, and Signal Processing, 2014, 33(2): 655–664. doi: 10.1007/s00034-013-9652-x
|
[12] |
MZYK G and WACHEL P. Wiener system identification by input injection method[J]. International Journal of Adaptive Control and Signal Processing, 2020, 34(8): 1105–1119. doi: 10.1002/acs.3124
|
[13] |
BAI Erwei. A blind approach to the Hammerstein–Wiener model identification[J]. Automatica, 2002, 38(6): 967–979. doi: 10.1016/S0005-1098(01)00292-8
|
[14] |
LACY S L and BERNSTEIN D S. Identification of FIR Wiener systems with unknown, noninvertible, polynomial nonlinearities[C]. Proceedings of 2002 American Control Conference, Anchorage, USA, 2002: 893–898.
|
[15] |
LJUNG L. System Identification[M]. WEBSTER J G. Wiley Encyclopedia of Electrical and Electronics Engineering. New York: John Wiley, 1999: 315–311. doi: 10.1002/047134608X.W1046.
|
[16] |
孙明轩, 毕宏博. 学习辨识: 最小二乘算法及其重复一致性[J]. 自动化学报, 2012, 38(5): 698–706. doi: 10.3724/SP.J.1004.2012.00698
SUN Mingxuan and BI Hongbo. Learning identification: Least squares algorithms and their repetitive consistency[J]. Acta Automatica Sinica, 2012, 38(5): 698–706. doi: 10.3724/SP.J.1004.2012.00698
|
[17] |
孙明轩, 毕宏博. 最小二乘学习辨识[C]. 第三十届中国控制会议, 烟台, 中国, 2011: 1615–1620.
SUN Mingxuan and BI Hongbo. Least squares learning identification[C]. Proceedings of the 30th Chinese Control Conference, Yantai, China, 2011: 1615–1620.
|
[18] |
HAMMAR K, DJAMAH T, and BETTAYEB M. Nonlinear system identification using fractional Hammerstein-Wiener models[J]. Nonlinear Dynamics, 2019, 98(3): 2327–2338. doi: 10.1007/s11071-019-05331-9
|
[19] |
DING Feng, LIU P X, and LIU Guangjun. Gradient based and least-squares based iterative identification methods for OE and OEMA systems[J]. Digital Signal Processing, 2010, 20(3): 664–677. doi: 10.1016/j.dsp.2009.10.012
|
[20] |
DING Feng, SHI Yang, and CHEN Tongwen. Performance analysis of estimation algorithms of nonstationary ARMA processes[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1041–1053. doi: 10.1109/TSP.2005.862845
|
[21] |
DING Feng, XU Ling, MENG Dandan, et al. Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model[J]. Journal of Computational and Applied Mathematics, 2019, 369: 112575. doi: 10.1016/j.cam.2019.112575
|