Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Liang BIAN, Yadong QU, Yu ZHOU. Bi-directional Feature Fusion for Fast and Accurate Text Detection of Arbitrary Shapes[J]. Journal of Electronics & Information Technology, 2021, 43(4): 931-938. doi: 10.11999/JEIT200880
Citation: Liang BIAN, Yadong QU, Yu ZHOU. Bi-directional Feature Fusion for Fast and Accurate Text Detection of Arbitrary Shapes[J]. Journal of Electronics & Information Technology, 2021, 43(4): 931-938. doi: 10.11999/JEIT200880

Bi-directional Feature Fusion for Fast and Accurate Text Detection of Arbitrary Shapes

doi: 10.11999/JEIT200880
  • Received Date: 2020-10-16
  • Rev Recd Date: 2021-01-29
  • Available Online: 2021-02-05
  • Publish Date: 2021-04-20
  • Existing segmentation based methods have problems, such as the difficulty in distinguishing adjacent text areas and the low efficiency of model detection caused by the complex steps in the post-processing stage. In order to solve this problem, this article proposes a novel scene text detection model based on fully convolutional network, which can solve the problem that adjacent texts are difficult to distinguish in existing methods and improve the detection speed of the model. First, it constructs a feature extractor to extract multi-scale feature map from the input image. Secondly, the bidirectional feature fusion module is used to fuse the semantic information of the two parallel branches and promote the joint optimization of the two branches. It then effectively differentiates adjacent texts by predicting both a reduced text area map and a full text area map in parallel. The former can guarantee the distinction between different text instances, while the latter can effectively guide the network optimization. Finally, in order to improve the speed of text detection, it proposes a fast and effective post-processing algorithm to generate text boundary boxes. The experimental results show that: on relative datasets, the method proposed in this article achieves the best performance, and improves the F-measure index by 1.0% at most compared with the current best method, and can achieve near-real-time speed, which proves fully the effectiveness and high efficiency of the method.
  • loading
  • 黄剑华, 承恒达, 吴锐, 等. 基于模糊同质性映射的文本检测方法[J]. 电子与信息学报, 2008, 30(6): 1376–1380.

    HUANG Jianhua, CHENG Hengda, WU Rui, et al. A new approach for text detection using fuzzy homogeneity[J]. Journal of Electronics &Information Technology, 2008, 30(6): 1376–1380.
    LONG Shangbang, RUAN Jiaqiang, ZHANG Wenjie, et al. Textsnake: A flexible representation for detecting text of arbitrary shapes[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 19–35.
    TIAN Zhuotao, SHU M, LYU P, et al. Learning shape-aware embedding for scene text detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4229–4238.
    HUANG Weilin, QIAO Yu, and TANG Xiaoou. Robust scene text detection with convolution neural network induced MSER trees[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 497–511.
    JADERBERG M, VEDALDI A, and ZISSERMAN A. Deep features for text spotting[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 512–528.
    DENG Dan, LIU Haifeng, LI Xuelong, et al. Pixellink: Detecting scene text via instance segmentation[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 6773–6780.
    WANG Wenhai, XIE Enze, LI Xiang, et al. Shape robust text detection with progressive scale expansion network[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9328–9337.
    XIE Enze, ZANG Yuhang, SHAO Shuai, et al. Scene text detection with supervised pyramid context network[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 9038–9045.
    LIAO Minghui, WAN Zhaoyi, YAO Cong, et al. Real-time scene text detection with differentiable binarization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11474–11481. doi: 10.1609/aaai.v34i07.6812
    LIAO Minghui, SHI Baoguang, and BAI Xiang. Textboxes++: A single-shot oriented scene text detector[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3676–3690. doi: 10.1109/TIP.2018.2825107
    SHI Baoguang, BAI Xiang, and BELONGIE S. Detecting oriented text in natural images by linking segments[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3482–3490.
    ZHOU Xinyu, YAO Cong, WEN He, et al. EAST: An efficient and accurate scene text detector[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2642–2651.
    ZHANG Chengquan, LIANG Borong, HUANG Zuming, et al. Look more than once: An accurate detector for text of arbitrary shapes[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10544–10553.
    DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 764–773.
    谢金宝, 侯永进, 康守强, 等. 基于语义理解注意力神经网络的多元特征融合中文文本分类[J]. 电子与信息学报, 2018, 40(5): 1258–1265. doi: 10.11999/JEIT170815

    XIE Jinbao, HOU Yongjin, KANG Shouqiang, et al. Multi-feature fusion based on semantic understanding attention neural network for Chinese text categorization[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1258–1265. doi: 10.11999/JEIT170815
    GUPTA A, VEDALDI A, and ZISSERMAN A. Synthetic data for text localisation in natural images[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2315–2324.
    LIU Yuliang, JIN Lianwen, ZHANG Shuaitao, et al. Curved scene text detection via transverse and longitudinal sequence connection[J]. Pattern Recognition, 2019, 90: 337–345.
    CH’NG C K and CHAN C S. Total-text: A comprehensive dataset for scene text detection and recognition[C]. The 2017 14th IAPR International Conference on Document Analysis and Recognition, Kyoto, Japan, 2017: 935–942.
    YAO Cong, BAI Xiang, LIU Wenyu, et al. Detecting texts of arbitrary orientations in natural images[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1083–1090.
    BAEK Y, LEE B, HAN D, et al. Character region awareness for text detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9357–9366.
    XUE Chuhui, LU Shijian, ZHANG Wei. MSR: Multiscale shape regression for scene text detection[C]. KRAUS S. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 989–995.
    XU Yongchao, WANG Yukang, ZHOU Wei, et al. Textfield: Learning a deep direction field for irregular scene text detection[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5566–5579.
    MA Jianqi, SHAO Weiyuan, YE Hao, et al. Arbitraryoriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111–3122.
    LIU Zichuan, LIN Guosheng, YANG Sheng, et al. Learning markov clustering networks for scene text detection[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6936–6944.
    TIAN Zhi, HUANG Weilin, HE Tong, et al. Detecting text in natural image with connectionist text proposal network[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 56–72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (1272) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return