Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Bin YU, Hai HUANG, Zhiwei LIU, Shilei ZHAO, Ning NA. High-performance Hardware Architecture Design and Implementation of Ed25519 Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1821-1827. doi: 10.11999/JEIT200876
Citation: Bin YU, Hai HUANG, Zhiwei LIU, Shilei ZHAO, Ning NA. High-performance Hardware Architecture Design and Implementation of Ed25519 Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1821-1827. doi: 10.11999/JEIT200876

High-performance Hardware Architecture Design and Implementation of Ed25519 Algorithm

doi: 10.11999/JEIT200876
Funds:  The Natural Science Foundation of Heilongjiang (YQ2019F010), Heilongjiang Postdoctoral Funds for Scientific Research Initiation (LBH-Q18065), The Science and Technology Development Special Project of Central Guide the Local Government of China (ZY20B11)
  • Received Date: 2020-10-12
  • Rev Recd Date: 2021-01-29
  • Available Online: 2021-03-01
  • Publish Date: 2021-07-10
  • The speed of existing signature and verification architecture is difficult to meet the requirement of the specific applications domain, to solve this problem a high-performance hardware architecture of Ed25519 algorithm is developed. The scalar multiplication algorithm is implemented by using the window method with 2 bit width to reduce the total cycle numbers of the algorithm significantly. By optimizing the order of operations of point addition and point doubling, the hardware utilization rate of multiplier is improved. The module multiplication is realized by using fast module reduction with low computational complexity, thus the overall operation speed is improved. The modular L algorithm based on Barrett reduction is proposed to reuse the fast modular reduction in scalar multiplications. By optimizing the modular power computation in the decompression process, the steps are simplified and the modular multiplication can be reused. Under the TSMC 55 nm CMOS process, the area of the proposed hardware architecture is 7.46×105 equivalent gate, and the maximum frequency is up to 360 MHz. It can perform 9.06×104 key generations, 8.82×104 signatures and 3.99×104 verifications per second.
  • loading
  • [1]
    RESCORLA E. IETF RFC 8446 The Transport Layer Security (TLS) protocol version 1.3[S]. 2018.
    [2]
    LANGLEY A, HAMBURG M, and TURNER S. IRTF RFC 7748 Elliptic curves for security[S]. 2016.
    [3]
    FAZ-HERNÁNDEZ A, LÓPEZ J, and DAHAB R. High-performance implementation of elliptic curve cryptography using vector instructions[J]. ACM Transactions on Mathematical Software, 2019, 45(3): 25.1–25.35. doi: 10.1145/3309759
    [4]
    ISLAM M M, HOSSAIN M S, HASAN M K, et al. FPGA implementation of high-speed area-efficient processor for elliptic curve point multiplication over prime field[J]. IEEE Access, 2019, 7: 178811–178826. doi: 10.1109/ACCESS.2019.2958491
    [5]
    戴紫彬, 易肃汶, 李伟, 等. 椭圆曲线密码处理器的高效并行处理架构研究与设计[J]. 电子与信息学报, 2017, 39(10): 2487–2494. doi: 10.11999/JEIT161380

    DAI Zibin, YI Suwen, LI Wei, et al. Research and design of efficient parallel processing architecture for elliptic curve cryptographic processor[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2487–2494. doi: 10.11999/JEIT161380
    [6]
    KIM J, PARK J H, KIM D C, et al. Complete addition law for Montgomery curves[C]. The 22nd International Conference on Information Security and Cryptology– ICISC 2019, Seoul, South Korea, 2019: 260–277. doi: 10.1007/978-3-030-40921-0_16.
    [7]
    SALARIFARD R and BAYAT-SARMADI S. An efficient low-latency point-multiplication over curve25519[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(10): 3854–3862. doi: 10.1109/TCSI.2019.2914247
    [8]
    TURAN F and VERBAUWHEDE I. Compact and flexible FPGA implementation of Ed25519 and X25519[J]. ACM Transactions on Embedded Computing Systems, 2019, 18(3): 24. doi: 10.1145/3312742
    [9]
    MEHRABI M A and DOCHE C. Low-cost, low-power FPGA implementation of ED25519 and CURVE25519 point multiplication[J]. Information, 2019, 10(9): 285. doi: 10.3390/info10090285
    [10]
    魏伟, 陈佳哲, 李丹, 等. 椭圆曲线Diffie-Hellman密钥交换协议的比特安全性研究[J]. 电子与信息学报, 2020, 42(8): 1820–1827. doi: 10.11999/JEIT190845

    WEI Wei, CHEN Jiazhe, LI Dan, et al. Research on the bit security of elliptic curve Diffie-Hellman[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1820–1827. doi: 10.11999/JEIT190845
    [11]
    KOPPERMANN P, DE SANTIS F, HEYSZL J, et al. Low-latency X25519 hardware implementation: Breaking the 100 microseconds barrier[J]. Microprocessors and Microsystems, 2017, 52: 491–497. doi: 10.1016/j.micpro.2017.07.001
    [12]
    SASDRICH P and GÜNEYSU T. Exploring RFC 7748 for hardware implementation: Curve25519 and Curve448 with side-channel protection[J]. Journal of Hardware and Systems Security, 2018, 2(4): 297–313. doi: 10.1007/s41635-018-0048-z
    [13]
    SASDRICH P and GÜNEYSU T. Implementing Curve25519 for side-channel--protected elliptic curve cryptography[J]. ACM Transactions on Reconfigurable Technology and Systems, 2015, 9(1): 3. doi: 10.1145/2700834
    [14]
    JOSEFSSON S and LIUSVAARA I. IRTF RFC 8032 Edwards-curve digital signature algorithm (EdDSA)[S]. 2017.
    [15]
    VENGALA D V K, KAVITHA D, and KUMAR A P S. Secure data transmission on a distributed cloud server with the help of HMCA and data encryption using optimized CP-ABE-ECC[J]. Cluster Computing, 2020, 23(3): 1683–1696. doi: 10.1007/s10586-020-03114-1
    [16]
    LI Hui. Pseudo-random scalar multiplication based on group isomorphism[J]. Journal of Information Security and Applications, 2020, 53: 102534. doi: 10.1016/j.jisa.2020.102534
    [17]
    ZHANG Neng, YANG Bohan, CHEN Chen, et al. Highly efficient architecture of NewHope-NIST on FPGA using low-complexity NTT/INTT[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2020(2): 49–72. doi: 10.13154/tches.v2020.i2.49-72
    [18]
    HOSSAIN M S, KONG Yinan, SAEEDI E, et al. High-performance elliptic curve cryptography processor over NIST prime fields[J]. IET Computers & Digital Techniques, 2017, 11(1): 33–42. doi: 10.1049/iet-cdt.2016.0033
    [19]
    KNEZEVIC M, VERCAUTEREN F, and VERBAUWHEDE I. Faster interleaved modular multiplication based on Barrett and Montgomery reduction methods[J]. IEEE Transactions on Computers, 2010, 59(12): 1715–1721. doi: 10.1109/TC.2010.93
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(13)

    Article Metrics

    Article views (1910) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return