Citation: | Jinbao XIE, Jiahui LI, Shouqiang KANG, Qingyan WANG, Yujing WANG. A Multi-domain Text Classification Method Based on Recurrent Convolution Multi-task Learning[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2395-2403. doi: 10.11999/JEIT200869 |
[1] |
谢金宝, 侯永进, 康守强, 等. 基于语义理解注意力神经网络的多元特征融合中文文本分类[J]. 电子与信息学报, 2018, 40(5): 1258–1265. doi: 10.11999/JEIT170815
XIE Jinbao, HOU Yongjin, KANG Shouqiang, et al. Multi-feature fusion based on semantic understanding attention neural network for Chinese text categorization[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1258–1265. doi: 10.11999/JEIT170815
|
[2] |
KIM Y. Convolutional neural networks for sentence classification[C]. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014: 1746–1751. doi: 10.3115/v1/D14-1181.
|
[3] |
BLITZER J, DREDZE M, and PEREIRA F. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification[C]. The 45th Annual Meeting of the Association of Computational Linguistics (ACL), Prague, Czech Republic, 2007: 440–447.
|
[4] |
CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41–75. doi: 10.1023/A:1007379606734
|
[5] |
LIU Xiaodong, GAO Jianfeng, HE Xiaodong, et al. Representation learning using multi-task deep neural networks for semantic classification and information retrieval[C]. The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL), Denver, USA, 2015: 912–921.
|
[6] |
LIU Pengfei, QIU Xipeng, and HUANG Xuanjing. Recurrent neural network for text classification with multi-task learning[C]. The Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), New York, USA, 2016: 2873–2879.
|
[7] |
LIU Pengfei, QIU Xipeng, and HUANG Xuanjing. Adversarial multi-task learning for text classification[C]. The 55th Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver, Canada, 2017: 1–10.
|
[8] |
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[9] |
王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
|
[10] |
KALCHBRENNER N, GREFENSTETTE E, and BLUNSOM P. A convolutional neural network for modelling sentences[C]. The 52nd Annual Meeting of the Association for Computational Linguistics (ACL), Baltimore, USA, 2014: 655–665.
|
[11] |
刘宗林, 张梅山, 甄冉冉, 等. 融入罪名关键词的法律判决预测多任务学习模型[J]. 清华大学学报: 自然科学版, 2019, 59(7): 497–504. doi: 10.16511/j.cnki.qhdxxb.2019.21.020
LIU Zonglin, ZHANG Meishan, ZHEN Ranran, et al. Multi-task learning model for legal judgment predictions with charge keywords[J]. Journal of Tsinghua University:Science and Technology, 2019, 59(7): 497–504. doi: 10.16511/j.cnki.qhdxxb.2019.21.020
|
[12] |
COLLOBERT R and WESTON J. A unified architecture for natural language processing: Deep neural networks with multitask learning[C]. The 25th International Conference on Machine Learning (ICML), Helsinki, Finland, 2008: 160–167.
|
[13] |
LI Shoushan, HUANG Churen, and ZONG Chengqing. Multi-domain sentiment classification with classifier combination[J]. Journal of Computer Science and Technology, 2011, 26(1): 25–33. doi: 10.1007/s11390-011-9412-y
|
[14] |
LIU Pengfei, QIU Xipeng, and HUANG Xuanjing. Deep multi-task learning with shared memory for text classification[C]. 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), Austin, USA, 2016: 118–127.
|
[15] |
LIU Pengfei, FU Jie, DONG Yue, et al. Learning multi-task communication with message passing for sequence learning[C]. AAAI Conference on Artificial Intelligence (AAAI), Palo Alto, USA, 2019: 4360–4367.
|
[16] |
YUAN Zhigang, WU Sixing, WU Fangzhao, et al. Domain attention model for multi-domain sentiment classification[J]. Knowledge-Based Systems, 2018, 155: 1–10. doi: 10.1016/j.knosys.2018.05.004
|
[17] |
MAAS A L, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]. The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL), Portland, USA, 2011: 142–150.
|
[18] |
PANG Bo and LEE L. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales[C]. The 43rd Annual Meeting on Association for Computational Linguistics (ACL), Ann Arbor, USA, 2005: 115–124.
|