Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Shi YI, Junjie LI, Yong JIA. Instance Segmentation of Thermal Imaging Temperature Measurement Region Based on Infrared Attention Enhancement Mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3505-3512. doi: 10.11999/JEIT200862
Citation: Shi YI, Junjie LI, Yong JIA. Instance Segmentation of Thermal Imaging Temperature Measurement Region Based on Infrared Attention Enhancement Mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3505-3512. doi: 10.11999/JEIT200862

Instance Segmentation of Thermal Imaging Temperature Measurement Region Based on Infrared Attention Enhancement Mechanism

doi: 10.11999/JEIT200862
Funds:  The National Natural Science Foundation of China (61771096), The Key Laboratory of Industrial Internet of Things & Networked Control Foundation, Ministry of Education (2020FF06), The Terahertz Science and Technology Key Laboratory Foundation of Sichuan Province (THZSC202001)
  • Received Date: 2020-10-09
  • Rev Recd Date: 2021-04-22
  • Available Online: 2021-07-15
  • Publish Date: 2021-12-21
  • AI+thermal imaging human body temperature monitoring system is widely used for real-time temperature measurement of human body in dense crowds. The artificial intelligence method used in such systems detects the human head region for temperature measurement. The temperature measurement area may be too small to measure correctly due to occlusion. To tackle this problem, an anchor-free instance segmentation network incorporating infrared attention enhancement mechanism is proposed for real-time infrared thermal imaging temperature measurement area segmentation. The instance segmentation network proposed in this paper integrates the Infrared Spatial Attention Module (ISAM) in the detection stage and the segmentation stage, aiming to accurately segment the bare head area in the infrared image. Combined with the public thermal imaging facial dataset and the collected infrared thermal imaging dataset, the "thermal imaging temperature measurement area segmentation dataset" is produced. Experimental results demonstrate that this method reached an average detection precision of 88.6%, average mask precision of 86.5%, average processing speed of 33.5 fps. This network is superior to most state of the art instance segmentation methods in objective evaluation metrics.
  • loading
  • [1]
    USAMENTIAGA R, VENEGAS P, GUEREDIAGA J, et al. Infrared thermography for temperature measurement and non-destructive testing[J]. Sensors, 2014, 14(7): 12305–12348. doi: 10.3390/s140712305
    [2]
    KAMMERSGAARD T S, MALMKVIST J, and PEDERSEN L J. Infrared thermography–a non-invasive tool to evaluate thermal status of neonatal pigs based on surface temperature[J]. Animal, 2013, 7(12): 2026–2034. doi: 10.1017/S1751731113001778
    [3]
    ARORA N, MARTINS D, RUGGERIO D, et al. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer[J]. The American Journal of Surgery, 2008, 196(4): 523–526. doi: 10.1016/j.amjsurg.2008.06.015
    [4]
    KONTOS M, WILSON R, and FENTIMAN I. Digital Infrared Thermal Imaging (DITI) of breast lesions: Sensitivity and specificity of detection of primary breast cancers[J]. Clinical Radiology, 2011, 66(6): 536–539. doi: 10.1016/j.crad.2011.01.009
    [5]
    CLARK R P and STOTHERS J K. Neonatal skin temperature distribution using infra-red colour thermography[J]. The Journal of Physiology, 1980, 302: 323–333. doi: 10.1113/jphysiol.1980.sp013245
    [6]
    RASOR J S, ZLOTTA A R, EDWARDS S D, et al. TransUrethral Needle Ablation (TUNA): Thermal gradient mapping and comparison of lesion size in a tissue model and in patients with benign prostatic hyperplasia[J]. European Urology, 1993, 24(3): 411–414. doi: 10.1159/000474339
    [7]
    BAGAVATHIAPPAN S, SARAVANAN T, PHILIP J, et al. Investigation of peripheral vascular disorders using thermal imaging[J]. The British Journal of Diabetes & Vascular Disease, 2008, 8(2): 102–104.
    [8]
    BAGAVATHIAPPAN S, SARAVANAN T, PHILIP J, et al. Infrared thermal imaging for detection of peripheral vascular disorders[J]. Journal of Medical Physics, 2009, 34(1): 43–47. doi: 10.4103/0971-6203.48720
    [9]
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision, Shenzhen, China, 2017: 2961–2969. doi: 10.1109/TPAMI.2018.2844175.
    [10]
    BOLYA D, ZHOU Chong, XIAO Fanyi, et al. YOLACT++: Better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, To be published. doi: 10.1109/TPAMI.2020.3014297
    [11]
    LEE Y and PARK J. CenterMask: Real-time anchor-free instance segmentation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13903–13912.
    [12]
    XIE Enze, SUN Peize, SONG Xiaoge, et al. PolarMask: Single shot instance segmentation with polar representation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12190–12199.
    [13]
    BENINI S, KHAN K, LEONARDI R, et al. Face analysis through semantic face segmentation[J]. Signal Processing: Image Communication, 2019, 74: 21–31. doi: 10.1016/j.image.2019.01.005
    [14]
    GHIASS R S, ARANDJELOVIĆ O, BENDADA A, et al. Infrared face recognition: A comprehensive review of methodologies and databases[J]. Pattern Recognition, 2014, 47(9): 2807–2824. doi: 10.1016/j.patcog.2014.03.015
    [15]
    YANG Changcai, ZHOU Huabing, SUN Sheng, et al. Good match exploration for infrared face recognition[J]. Infrared Physics & Technology, 2014, 67: 111–115.
    [16]
    BUDZAN S and WYŻGOLIK R. Face and eyes localization algorithm in thermal images for temperature measurement of the inner canthus of the eyes[J]. Infrared Physics & Technology, 2013, 60: 225–234.
    [17]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [18]
    ZHOU Xingyi, WANG Dequan, and KRÄHENBÜHL P. Objects as points[C]. IEEE Conference on Computer Vision and Pattern Recognition, Los Angeles, 2019: 2678–2689.
    [19]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [20]
    PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module[C]. European Conference on Computer Vision, Munich, Germany, 2018: 68–86.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (882) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return