Citation: | Guangjun YAN, Wanzhong CHEN, Tao ZHANG, Yun JIANG, Shuifang REN. Research on Gesture Classification Methods in Amputee Subjects Based on Gray Theory Model[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2552-2560. doi: 10.11999/JEIT200859 |
[1] |
POLISIERO M, BIFULCO P, LICCARDO A, et al. Design and assessment of a low-Cost, electromyographically controlled, prosthetic hand[J]. Medical Devices: Evidence and Research, 2013, 2013: 97–104. doi: 10.2147/MDER.S39604
|
[2] |
胡中旭. 虚拟场景人机交互中手势识别技术研究[D]. [博士论文], 华中科技大学, 2018.
HU Zhongxu. Research on gesture recognition technology in human-computer interaction of virtual scene[D]. [Ph. D. dissertation], Huazhong University of Science and Technology, 2018.
|
[3] |
曾海滨. 基于表面肌电控制的外骨骼手功能康复机器人研究[D]. [硕士论文], 山东大学, 2019.
ZENG Haibin. A novel sEMG-controlled hand function exoskeleton robot for rehabilitation in post-stroke individuals[D]. [Master dissertation], Shandong University, 2019.
|
[4] |
邹俞, 晁建刚, 杨进. 航天员虚拟交互操作训练多体感融合驱动方法研究[J]. 图学学报, 2018, 39(4): 742–751.
ZOU Yu, CHAO Jiangang, and YANG Jin. On multi-somatosensory driven method for virtual interactive operation training of astronaut[J]. Journal of Graphics, 2018, 39(4): 742–751.
|
[5] |
李晓宇. 基于手势交互的移动机器人三维环境探索及感知技术研究[D]. [硕士论文], 哈尔滨工业大学, 2017.
LI Xiaoyu. Research on unknown environment exploration and perception based on hand gesture interaction for mobile robots[D]. [Master dissertation], Harbin Institute of Technology, 2017.
|
[6] |
夏朝阳, 周成龙, 介钧誉, 等. 基于多通道调频连续波毫米波雷达的微动手势识别[J]. 电子与信息学报, 2020, 42(1): 164–172. doi: 10.11999/JEIT190797
XIA Zhaoyang, ZHOU Chenglong, JIE Junyu, et al. Micro-motion gesture recognition based on multi-channel frequency modulated continuous wave millimeter wave radar[J]. Journal of Electronics &Information Technology, 2020, 42(1): 164–172. doi: 10.11999/JEIT190797
|
[7] |
王勇, 吴金君, 田增山, 等. 基于FMCW雷达的多维参数手势识别算法[J]. 电子与信息学报, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485
WANG Yong, WU Jinjun, TIAN Zengshan, et al. Gesture recognition with multi-dimensional parameter using FMCW radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485
|
[8] |
马杰, 张绣丹, 杨楠, 等. 融合密集卷积与空间转换网络的手势识别方法[J]. 电子与信息学报, 2018, 40(4): 951–956. doi: 10.11999/JEIT170627
MA Jie, ZHANG Xiudan, YANG Nan, et al. Gesture recognition method combining dense convolutional with spatial transformer networks[J]. Journal of Electronics &Information Technology, 2018, 40(4): 951–956. doi: 10.11999/JEIT170627
|
[9] |
石欣, 朱家庆, 秦鹏杰, 等. 基于改进能量核的下肢表面肌电信号特征提取方法[J]. 仪器仪表学报, 2020, 41(1): 121–128. doi: 10.19650/j.cnki.cjsi.j1905438
SHI Xin, ZHU Jiaqing, QIN Pengjie, et al. Feature extraction method of lower limb surface EMG signal based on improved energy nucleus[J]. Chinese Journal of Scientific Instrument, 2020, 41(1): 121–128. doi: 10.19650/j.cnki.cjsi.j1905438
|
[10] |
SAUDABAYEV A, and VAROL H A. Sensors for robotic hands: A survey of state of the art[J]. IEEE Access, 2015, 3: 1765–1782. doi: 10.1109/ACCESS.2015.2482543
|
[11] |
LIU Lukai, LIU Pu, CLANCY E A, et al. Electromyogram whitening for improved classification accuracy in upper limb prosthesis control[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(5): 767–774. doi: 10.1109/TNSRE.2013.2243470
|
[12] |
丁其川, 熊安斌, 赵新刚, 等. 基于表面肌电的运动意图识别方法研究及应用综述[J]. 自动化学报, 2016, 42(1): 13–25. doi: 10.16383/j.aas.2016.c140563
DING Qichuan, XIONG Anbin, ZHAO Xingang, et al. A review on researches and applications of sEMG-based motion intent recognition methods[J]. Acta Automatica Sinica, 2016, 42(1): 13–25. doi: 10.16383/j.aas.2016.c140563
|
[13] |
LI Guanglin, SCHULTZ A E, KUIKEN T A. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(2): 185–192. doi: 10.1109/TNSRE.2009.2039619
|
[14] |
汪洋, 张定国. 针对上肢高位截肢者的肌电假肢设计[J]. 传感器与微系统, 2008, 37(4): 84–88, 91. doi: 10.13873/J.1000-9787(2018)04-0084-05
WANG Yang and ZHANG Dingguo. Design of myoelectric upper-limb prosthesis towards amputees with high-level amputation[J]. Transducer and Microsystem Technologies, 2008, 37(4): 84–88, 91. doi: 10.13873/J.1000-9787(2018)04-0084-05
|
[15] |
JIRALERSPONG T, NAKANISHI E, LIU Chao, et al. Experimental study of real-time classification of 17 voluntary movements for multi-degree myoelectric prosthetic hand[J]. Applied Sciences, 2017, 7(11): 1163. doi: 10.3390/app7111163
|
[16] |
ROBINSON C P, LI Baihua, MENG Qinggang, et al. Effectiveness of surface electromyography in pattern classification for upper limb amputees[C]. Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition, Beijing, China, 2018: 107–112. doi: 10.1145/3268866.3268889.
|
[17] |
CENE V H and BALBINOT A. Enhancing the classification of hand movements through sEMG signal and non-iterative methods[J]. Health and Technology, 2019, 9(4): 561–577. doi: 10.1007/s12553-019-00315-6
|
[18] |
WANG Zhengxin and HAO Peng. An improved grey multivariable model for predicting industrial energy consumption in China[J]. Applied Mathematical Modelling, 2016, 40(11/12): 5745–5758. doi: 10.1016/j.apm.2016.01.012
|
[19] |
丁松, 党耀国, 徐宁. 基于虚拟变量控制的GM(1, N)模型构建及其应用[J]. 控制与决策, 2018, 33(2): 309–315. doi: 10.13195/j.kzyjc.2016.1613
DING Song, DANG Yaoguo, and XU Ning. Construction and application of GM(1, N) based on control of dummy variables[J]. Control and Decision, 2018, 33(2): 309–315. doi: 10.13195/j.kzyjc.2016.1613
|
[20] |
NAIK G R, ARJUNAN S, and KUMAR D. Applications of ICA and fractal dimension in sEMG signal processing for subtle movement analysis: A review[J]. Australasian Physical & Engineering Sciences in Medicine, 2011, 34(2): 179–193. doi: 10.1007/s13246-011-0066-4
|
[21] |
CIPRIANI C, ANTFOLK C, CONTROZZI M, et al. Online myoelectric control of a dexterous hand prosthesis by transradial amputees[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(3): 260–270. doi: 10.1109/TNSRE.2011.2108667
|
[22] |
蒋贵虎, 陈万忠, 马迪, 等. 基于ITD和PLV的四类运动想象脑电分类方法研究[J]. 仪器仪表学报, 2019, 40(5): 195–202. doi: 10.19650/j.cnki.cjsi.j1904651
JIANG Guihu, CHEN Wanzhong, MA Di, et al. Research on four-class motor imagery EEG classification method based on ITD and PLV[J]. Chinese Journal of Scientific Instrument, 2019, 40(5): 195–202. doi: 10.19650/j.cnki.cjsi.j1904651
|
[23] |
ATZORI M, GIJSBERTS A, CASTELLINI C, et al. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands[J]. Journal of Rehabilitation Research & Development, 2016, 53(3): 345–358. doi: 10.1682/JRRD.2014.09.0218
|
[24] |
GIJSBERTS A, ATZORI M, CASTELLINI C, et al. Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(4): 735–744. doi: 10.1109/TNSRE.2014.2303394
|
[25] |
张思佳. 无线穿戴式表面肌电信号采集系统设计[D]. [硕士论文], 浙江大学, 2019.
ZHANG Sijia. Design of wireless wearable surface EMG signal acquisition system[D]. [Master dissertation], Zhejiang University, 2019.
|
[26] |
SMITH L H, HARGROVE L J, LOCK B A, et al. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(2): 186–192. doi: 10.1109/TNSRE.2010.2100828
|
[27] |
TENORE F V G, RAMOS A, FAHMY A, et al. Decoding of individuated finger movements using surface electromyography[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(5): 1427–1434. doi: 10.1109/TBME.2008.2005485
|
[28] |
HUANG Gan, ZHANG Zhiguo, ZHANG Dingguo, et al. Spatio-spectral filters for low-density surface electromyographic signal classification[J]. Medical & Biological Engineering & Computing, 2013, 51(5): 547–555. doi: 10.1007/s11517-012-1024-3
|
[29] |
刘俊宏. 基于特征值降维与多元信号融合的手部动作识别算法研究[D]. [硕士论文], 吉林大学, 2017.
LIU Junhong. Recognition algorithms of hand movements based on feature dimensionality reduction and multiple signal fusion[D]. [Master dissertation], Jilin University, 2017.
|