Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
LIU Shunlan, WANG Yan. A Low-complexity Decoding Algorithm Based on Parity-Check-Concatenated Polar Codes[J]. Journal of Electronics & Information Technology, 2022, 44(2): 637-645. doi: 10.11999/JEIT200840
Citation: LIU Shunlan, WANG Yan. A Low-complexity Decoding Algorithm Based on Parity-Check-Concatenated Polar Codes[J]. Journal of Electronics & Information Technology, 2022, 44(2): 637-645. doi: 10.11999/JEIT200840

A Low-complexity Decoding Algorithm Based on Parity-Check-Concatenated Polar Codes

doi: 10.11999/JEIT200840
Funds:  The National Natural Science Foundation of China (U1809201), The Zhejiang Provincial Natural Science Foundation (LY18F010013)
  • Received Date: 2020-09-28
  • Accepted Date: 2021-07-18
  • Rev Recd Date: 2021-07-18
  • Available Online: 2021-12-10
  • Publish Date: 2022-02-25
  • Polar codes have perfect coding and decoding performance as a kind of error correction code, which have become a standard coding scheme for 5G short code control channel. While the length of polar codes is short, its performance is not good enough. A novel concatenating scheme, parity check codes concatenating polar codes, has improved the performance of the limited length of polar codes. However, its decoding algorithm has high complexity. In order to solve the problem, a Parity Check aided Partial Successive Cancellation List(PC-PSCL) algorithm based on parity-check-concatenated polar codes is proposed. In this algorithm, outer codes are constructed before encoding and the information bits with not enough reliability are selected through sub-channel error probability obtained by Gaussian Approximation (GA), which perform Successive Cancellation List (SCL) decoding with the help of parity check codes, while the remaining bits just perform Successive Cancellation (SC) decoding. The simulations in additive white Gaussian noise channel reveal that when the codes length is 512, the codes rate is 1/2, the frame error rate is $ {10}^{-3} $ and the maximum list length is 8, the proposed low-complexity decoding algorithm achieves a gain of about 0.5 dB over the SCL decoding algorithm, keeps the similar performance compared with the original decoding algorithm, and the space complexity and time complexity of the decoding algorithm are reduced by 38.09% and 15.63% respectively.
  • loading
  • [1]
    ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379
    [2]
    HONG S N, HUI D, and MARIĆ I. Capacity-achieving rate-compatible polar codes[J]. IEEE Transactions on Information Theory, 2017, 63(12): 7620–7632. doi: 10.1109/TIT.2017.2756668
    [3]
    BIOGLIO V and LAND I. Polar-code construction of Golay codes[J]. IEEE Communications Letters, 2018, 22(3): 466–469. doi: 10.1109/LCOMM.2018.2793273
    [4]
    张孝甜, 赵生妹, 郑宝玉. 无线信道中的Polar码协商[J]. 信号处理, 2018, 34(7): 793–798. doi: 10.16798/j.issn.1003-0530.2018.07.005

    ZHANG Xiaotian, ZHAO Shengmei, and ZHENG Baoyu. Key reconciliation using Polar code in wireless channel[J]. Journal of Signal Processing, 2018, 34(7): 793–798. doi: 10.16798/j.issn.1003-0530.2018.07.005
    [5]
    3GPP. 3GPP TS 38.212 v15.0. 0-2017 Multiplexing and channel coding (Release 15)[S]. Valbonne: 3GPP, 2017.
    [6]
    TAL I and VARDY A. List decoding of polar codes[J]. IEEE Transactions on Information Theory, 2015, 61(5): 2213–2226. doi: 10.1109/TIT.2015.2410251
    [7]
    CHEN Kai, NIU Kai, and LIN Jiaru. List successive cancellation decoding of polar codes[J]. Electronics Letters, 2012, 48(9): 500–501. doi: 10.1049/el.2011.3334
    [8]
    ERCAN F, CONDO C, HASHEMI S A, et al. On error-correction performance and implementation of polar code list decoders for 5G[C]. 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2017: 443–449.
    [9]
    NIU Kai and CHEN Kai. CRC-aided decoding of polar codes[J]. IEEE Communications Letters, 2012, 16(10): 1668–1671. doi: 10.1109/LCOMM.2012.090312.121501
    [10]
    江涛, 王涛, 屈代明, 等. 极化码与奇偶校验码的级联编码: 面向5G及未来移动通信的编码方案[J]. 数据采集与处理, 2017, 32(3): 463–468. doi: 10.16337/j.1004-9037.2017.03.004

    JIANG Tao, WANG Tao, QU Daiming, et al. Concatenated coding of polar codes and parity-check codes: Coding scheme for 5G and future mobile communications[J]. Journal of Data Acquisition and Processing, 2017, 32(3): 463–468. doi: 10.16337/j.1004-9037.2017.03.004
    [11]
    MORI R and TANAKA T. Performance of polar codes with the construction using density evolution[J]. IEEE Communications Letters, 2009, 13(7): 519–521. doi: 10.1109/LCOMM.2009.090428
    [12]
    TRIFONOV P. Efficient design and decoding of polar codes[J]. IEEE Transactions on Communications, 2012, 60(11): 3221–3227. doi: 10.1109/TCOMM.2012.081512.110872
    [13]
    SCHÜRCH C. A partial order for the synthesized channels of a polar code[C]. 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 220–224.
    [14]
    HE Gaoning, BELFIORE J C, LAND I, et al. Beta-expansion: A theoretical framework for fast and recursive construction of polar codes[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.
    [15]
    BALATSOUKAS-STIMMING A, PARIZI M B, and BURG A. LLR-based successive cancellation list decoding of polar codes[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 3903–3907.
    [16]
    王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716

    WANG Qiong, LUO Yajie, and LI Sifang. Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
    [17]
    CHUNG S Y, RICHARDSON T J, and URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657–670. doi: 10.1109/18.910580
    [18]
    CHEN Kai, NIU Kai, and LIN Jiaru. A reduced-complexity successive cancellation list decoding of polar codes[C]. 2013 IEEE 77th Vehicular Technology Conference, Dresden, Germany, 2013: 1–5.
    [19]
    ZHANG Zhaoyang, ZHANG Liang, WANG Xianbin, et al. A split-reduced successive cancellation list decoder for polar codes[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2): 292–302. doi: 10.1109/JSAC.2015.2504321
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (799) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return