Citation: | Ming FANG, Xiaohan LIU, Feiran FU. Multi-scale Underwater Image Enhancement Network Based on Attention Mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3513-3521. doi: 10.11999/JEIT200836 |
[1] |
ZUIDERVELD K. Contrast Limited Adaptive Histogram Equalization[M]. Graphics Gems IV, Amsterdam: Elsevier, 1994: 474–485.
|
[2] |
ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA, 2012: 81–88.
|
[3] |
HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
|
[4] |
LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664–5677. doi: 10.1109/TIP.2016.2612882
|
[5] |
杨爱萍, 郑佳, 王建, 等. 基于颜色失真去除与暗通道先验的水下图像复原[J]. 电子与信息学报, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483
YANG Aiping, ZHENG Jia, WANG Jian, et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483
|
[6] |
DREWS P L J, NASCIMENTO E R, BOTELHO S S C, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 2016, 36(2): 24–35. doi: 10.1109/MCG.2016.26
|
[7] |
REN Wenqi, LIU Si, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Kingdom of the Netherlands, 2016: 154–169.
|
[8] |
AKKAYNAK D and TREIBITZ T. A revised underwater image formation model[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6723–6732.
|
[9] |
ANWAR S and LI Chongyi. Diving deeper into underwater image enhancement: A survey[EB/OL]. https://arxiv.org/abs/1907.07863, 2019.
|
[10] |
LI Jie, SKINNER K A, EUSTICE R M, et al. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 387–394. doi: 10.1109/LRA.2017.2730363
|
[11] |
HASHISHO Y, ALBADAWI M, KRAUSE T, et al. Underwater color restoration using u-net denoising autoencoder[EB/OL]. https://arxiv.org/abs/1905.09000. 2019.
|
[12] |
LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[EB/OL]. https://arxiv.org/abs/1901.05495, 2019.
|
[13] |
FABBRI C, ISLAM M J, and SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018: 7159–7165.
|
[14] |
ISLAM M J, XIA Y Y, and SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227–3234. doi: 10.1109/LRA.2020.2974710
|
[15] |
ZHANG Tingting, LI Yujie, and TAKAHASHI S. Underwater image enhancement using improved generative adversarial network[J]. Concurrency and Computation Practice and Experience, 2020: e5841. doi: 10.1002/cpe.5841
|
[16] |
PARK J, HAN D K, and KO H. Adaptive weighted multi-discriminator CycleGAN for underwater image enhancement[J]. Journal of Marine Science and Engineering, 2019, 7(7): 200. doi: 10.3390/jmse7070200
|
[17] |
ANWAR S, LI Chongyi, and PORIKLI F. Deep underwater image enhancement[EB/OL]. https://arxiv.org/abs/1807.03528, 2018.
|
[18] |
LI Chongyi, ANWAR S, and PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038. doi: 10.1016/j.patcog.2019.107038
|
[19] |
SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 746–760.
|
[20] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
|
[21] |
CHIANG J Y and CHEN Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1756–1769. doi: 10.1109/TIP.2011.2179666
|
[22] |
DING Xueyan, WANG Yafei, YAN Yang, et al. Jointly adversarial network to wavelength compensation and dehazing of underwater images[EB/OL]. https://arxiv.org/abs/1907.05595, 2019.
|
[23] |
ZHOU Yuan and YAN Kangming. Domain adaptive adversarial learning based on physics model feedback for underwater image enhancement[EB/OL]. https://arxiv.org/abs/2002.09315, 2020.
|
[24] |
QIN Xu, WANG Zhilin, BAI Yuanchao, et al. FFA-Net: Feature fusion attention network for single image dehazing[EB/OL]. https://arxiv.org/abs/1911.07559, 2019.
|
[25] |
柳长源, 王琪, 毕晓君, 等. 基于多通道多尺度卷积神经网络的单幅图像去雨方法[J]. 电子与信息学报, 2020, 42(9): 2285–2292. doi: 10.11999/JEIT190755
LIU Changyuan, WANG Qi, BI Xiaojun, et al. Research on rain removal method for single image based on multi-channel and multi-scale CNN[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2285–2292. doi: 10.11999/JEIT190755
|
[26] |
WANG Zhengyang and JI Shuiwang. Smoothed dilated convolutions for improved dense prediction[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery& Data Mining, London, UK, 2018: 2486–2495.
|
[27] |
CHEN Dongdong, HE Mingming, FAN Qingnan, et al. Gated context aggregation network for image dehazing and deraining[C]. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2019: 1375–1383.
|
[28] |
JOHNSON J, ALAHI A, and LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]. 14th European Conference on Computer Vision, Amsterdam, The Kingdom of the Netherlands, 2016: 694–711.
|
[29] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations (ICLR), San Diego, USA, 2015: 1–5.
|
[30] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
|
[31] |
PANETTA K, GAO C, and AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541–551. doi: 10.1109/JOE.2015.2469915
|
[32] |
DREWS P JR, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images[C]. 2013 IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2013: 825–830.
|
[33] |
PENG Y T and COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594. doi: 10.1109/TIP.2017.2663846
|
[34] |
SONG Wei, WANG Yan, HUANG Dongmei, et al. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration[C]. The 19th Pacific-Rim Conference on Multimedia, Hefei, China, 2018: 678–688.
|