Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Yi JIN, Changzhi XU, Tao JING, Xiaohuan WU, Jun YAN, Mingyu LI. Off-grid Sparse Representation Based Localization Method for Near-field Sources[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3105-3110. doi: 10.11999/JEIT200784
Citation: Yi JIN, Changzhi XU, Tao JING, Xiaohuan WU, Jun YAN, Mingyu LI. Off-grid Sparse Representation Based Localization Method for Near-field Sources[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3105-3110. doi: 10.11999/JEIT200784

Off-grid Sparse Representation Based Localization Method for Near-field Sources

doi: 10.11999/JEIT200784
Funds:  The National Key Research and Development Program (2019YFB1803102); The National Natural Science Foundation of China (61801377, 62171068)
  • Received Date: 2020-09-08
  • Rev Recd Date: 2021-10-14
  • Available Online: 2021-10-21
  • Publish Date: 2021-11-23
  • Near-field source localization is a potential research topic in next-generation wireless communications. Most existing methods focus on traditional subspace based methods or on-grid sparse methods. For the problem that the accuracy of subspace class method loss array aperture and sparse representation method is restricted by mesh effect, an off-grid sparse representation localization method is proposed in this paper. First, by obtaining a high-order cumulant matrix, an angle based off-grid signal model is constructed and then the alternatively iterating optimization method is employed to estimate the angles. For range estimation, a range parameter based off-grid signal model is constructed by using the angle estimation values and is solved by alternatively iterating method. Simulation results reveal that the proposed method not only possesses high estimation accuracy, but also can realize auto-pairing of angles and ranges.
  • loading
  • [1]
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    [2]
    ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    [3]
    MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882
    [4]
    蒋莹, 王冰切, 韩俊, 等. 基于分布式压缩感知的宽带欠定信号DOA估计[J]. 电子与信息学报, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723

    JIANG Ying, WANG Bingqie, HAN Jun, et al. Underdetermined wideband DOA estimation based on distributed compressive sensing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723
    [5]
    WU Xiaohuan, ZHU Weiping, and YAN Jun. Direction of arrival estimation for off-grid signals based on sparse bayesian learning[J]. IEEE Sensors Journal, 2016, 16(7): 2004–2016. doi: 10.1109/JSEN.2015.2508059
    [6]
    CHEN Peng, CAO Zhenxin, CHEN Zhimin, et al. Sparse off-grid DOA estimation method with unknown mutual coupling effect[J]. Digital Signal Processing, 2019, 90: 1–9. doi: 10.1016/j.dsp.2019.04.001
    [7]
    CHEN Peng, CHEN Zhimin, CAO Zhenxin, et al. A new atomic norm for DOA estimation with gain-phase errors[J]. IEEE Transactions on Signal Processing, 2020, 68: 4293–4306. doi: 10.1109/TSP.2020.3010749
    [8]
    ZHU Hao, LEUS G, and GIANNAKIS G. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002–2016. doi: 10.1109/TSP.2011.2109956
    [9]
    YANG Zai, ZHANG Cishen, and XIE Lihua. Robustly stable signal recovery in compressed sensing with structured matrix perturbation[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4658–4671. doi: 10.1109/TSP.2012.2201152
    [10]
    YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
    [11]
    WU Xiaohuan, ZHU Weiping, YAN Jun, et al. Two sparse-based methods for off-grid direction-of-arrival estimation[J]. Signal Processing, 2018, 142: 87–95. doi: 10.1016/j.sigpro.2017.07.004
    [12]
    BJÖRNSON E, SANGUINETTI L, WYMEERSCH H, et al. Massive MIMO is a reality - what is next?: five promising research directions for antenna arrays[J]. Digital Signal Processing, 2019, 94: 3–20. doi: 10.1016/j.dsp.2019.06.007
    [13]
    HE J, SWAMY M N S, and AHMAD M. Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2066–2070. doi: 10.1109/TSP.2011.2180902
    [14]
    LIANG Junli and LIU Ding. Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 108–120. doi: 10.1109/TSP.2009.2029723
    [15]
    WANG Bo, LIU Juanjuan, and SUN Xiaoying. Mixed sources localization based on sparse signal reconstruction[J]. IEEE Signal Processing Letters, 2012, 19(8): 487–490. doi: 10.1109/lsp.2012.2204248
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (636) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return