Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Hai LI, Lingli XIE, Zhining ZHANG. Wind Speed Estimation Method of Low-altitude Wind Shear Based on CL-KA-STAP in Complex Terrain Environment[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3647-3655. doi: 10.11999/JEIT200773
Citation: Hai LI, Lingli XIE, Zhining ZHANG. Wind Speed Estimation Method of Low-altitude Wind Shear Based on CL-KA-STAP in Complex Terrain Environment[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3647-3655. doi: 10.11999/JEIT200773

Wind Speed Estimation Method of Low-altitude Wind Shear Based on CL-KA-STAP in Complex Terrain Environment

doi: 10.11999/JEIT200773
Funds:  The Civil Aircraft Project (MJ-2018-S-28), The Key Projects of Tianjin Natural Fund(20JCZDJC00490), The Aviation Foundation of China (20182067008), The Basic Scientific Research Project of Universities of The CPC Central Committee (3122018D008), The Training Funds for Famous Blue Sky Teachers of Civil Aviation University of China
  • Received Date: 2020-08-31
  • Rev Recd Date: 2021-04-04
  • Available Online: 2021-07-13
  • Publish Date: 2021-12-21
  • When the airborne weather radar detects low-altitude wind shear in a complex terrain environment, the non-uniform characteristics of ground clutter make it difficult to accurately obtain clutter statistical characteristics, which in turn affects the clutter suppression effect, and makes the wind speed estimation of wind shear inaccurate. A Colored-Loading Knowledge-Aided STAP (CL-KA-STAP) wind speed estimation method of low-altitude wind shear is proposed. This method first constructs a dimensionality reduction joint space-time transformation matrix, and performs dimensionality reduction processing on the echo signal of the distance unit to be detected, and then integrates the prior knowledge obtained by the Digital Elevation Model (DEM) and the National Land Cover Database (NLCD) into the combined space. In the Combined space-time Main Channel Adaptive Processor (CMCAP), the color loading coefficient optimization function is constructed to solve the color loading coefficient, and finally the filter is constructed to realize the adaptive filtering of clutter and accurately estimate the wind speed. The subsequent simulation results prove the effectiveness of the proposed method.
  • loading
  • [1]
    DESHPANDE M D and STATON L. Determination of windspeed within a weather storm using airborne Doppler radar[C]. IEEE Southeastcon’91, Williamsburg, USA, 1991: 508–519. doi: 10.1109/SECON.1991.147807.
    [2]
    LAI Y C and BAXA E G. On the application of the LMS-based adaptive noise canceller in nonstationary environment associated with airborne Doppler weather radar[C]. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, USA, 1993, 3: 25–28. doi: 10.1109/ICASSP.1993.319426.
    [3]
    BAXA E J. Signal processing techniques for clutter filtering and wind shear detection[R]. NASA Report N91–24154, 1990.
    [4]
    WARD J. Space-time adaptive processing for airborne radar[R]. Report of Lincoln Laboratory, Lexington, MA, USA, 1998.
    [5]
    吴仁彪, 张彪, 李海, 等. 基于空时自适应处理的低空风切变风速估计方法[J]. 电子与信息学报, 2015, 37(3): 631–636. doi: 10.11999/JEIT140697

    WU Renbiao, ZHANG Biao, LI Hai, et al. Wind speed estimation for low-attitude windshear based on space-time adaptive processing[J]. Journal of Electronics &Information Technology, 2015, 37(3): 631–636. doi: 10.11999/JEIT140697
    [6]
    李海, 周盟, 陈筱浅, 等. 基于多通道联合自适应处理的微下击暴流中心风速估计方法[J]. 电子与信息学报, 2017, 39(7): 1619–1625. doi: 10.11999/JEIT161094

    LI Hai, ZHOU Meng, CHEN Xiaoqian, et al. Multiple Doppler channels joint adaptive processing based central wind speed estimation for microburst[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1619–1625. doi: 10.11999/JEIT161094
    [7]
    李海, 王杰. 基于CMCAP的低空风切变风速估计方法[J]. 系统工程与电子技术, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10

    LI Hai and WANG Jie. Low-altitude wind-shear wind speed estimation based on CMCAP[J]. Systems Engineering and Electronics, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10
    [8]
    MELVIN W, WICKS M, ANTONIK P, et al. Knowledge-based space-time adaptive processing for airborne early warning radar[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(4): 37–42. doi: 10.1109/62.666835
    [9]
    CAPRARO C T, CAPRARO G T, BRADARIC I, et al. Implementing digital terrain data in knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1080–1099. doi: 10.1109/TAES.2006.248199
    [10]
    RIEDL M and POTTER L C. Knowledge-aided Bayesian space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1850–1861. doi: 10.1109/TAES.2018.2805141
    [11]
    KANG Naixin, SHANG Zheran, and DU Qinglei. Knowledge-aided structured covariance matrix estimator applied for radar sensor signal detection[J]. Sensors, 2019, 19(3): 664. doi: 10.3390/s19030664
    [12]
    RIEDL M and POTTER L C. Multimodel shrinkage for knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2601–2610. doi: 10.1109/TAES.2018.2813898
    [13]
    BERGIN J S, TEIXEIRA C M, TECHAU P M, et al. STAP with knowledge-aided data pre-whitening[C]. The 2004 IEEE Radar Conference (IEEE Cat. No. 04CH37509), Philadelphia, USA, 2004: 289–294. doi: 10.1109/NRC.2004.1316437.
    [14]
    LI Hai, WANG Jie, FAN Yi, et al. High-fidelity inhomogeneous ground clutter simulation of airborne phased array PD radar aided by digital elevation model and digital land classification data[J]. Sensors, 2018, 18(9): 2925. doi: 10.3390/s18092925
    [15]
    BRINGI V N and CHANDRASEKAR V. Polarimetric, Doppler Weather Radar: Principles and Applications[M]. Cambridge, UK: Cambridge University Press, 2005: 1–100.
    [16]
    BOYER E, LARZABAL P, ADNET C et al. Parametric spectral moments estimation for wind profiling radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(8): 1859–1868. doi: 10.1109/TGRS.2003.813487
    [17]
    姚晖. 分布式信号源参数估计技术研究[D]. [博士论文], 解放军信息工程大学, 2013: 9–25.

    YAO Hui. Research on parameter estimation method for distributed sources[D]. [Ph. D. dissertation], PLA Information Engineering University, 2013: 9–25.
    [18]
    刘青光, 彭应宁, 孙欣, 等. 机载雷达自适应杂波抑制的联合通道变换方法[J]. 电子学报, 1994, 22(6): 1–9. doi: 10.3321/j.issn:0372-2112.1994.06.001

    LIU Qingguang, PENG Yingning, SUN Xin, et al. Adaptive clutter suppression in airborne radar by a combined channel transformation approach[J]. Acta Electronica Sinica, 1994, 22(6): 1–9. doi: 10.3321/j.issn:0372-2112.1994.06.001
    [19]
    张圣鹋. 机载认知雷达中的KA-STAP研究[D]. [博士学位论文], 电子科技大学, 2017: 91–102.

    ZHANG Shenghu. Study on KA-STAP of the airborne cognitive radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2017: 91–102.
    [20]
    MORCHIN W C. Airborne Early Warning Radar[M]. Fitchburg: Artech House, 1990: 20–100.
    [21]
    乌拉比 F T, 穆尔 R K, 冯健超, 黄培康, 汪一飞, 译. 微波遥感-第二卷-雷达遥感和面目标的散射、辐射理论[M]. 北京: 科学出版社, 1987: 1–50.

    ULABY F T, MOORE R K, FUNG A K, HUANG Peikang, WANG Yifei, translation. Microwave Remote Sensing. Volume II Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Beijing: Science Press, 1987: 1–50.
    [22]
    ZHU Xumin, LI Jian, STOICA P, et al. Knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1325–1336. doi: 10.1109/TAES.2011.5751261
    [23]
    王晓明, 李军, 张圣鹋, 等. 基于稀疏恢复谱相似度的自适应样本筛选算法[J]. 系统工程与电子技术, 2018, 40(5): 976–981. doi: 10.3969/j.issn.1001-506X.2018.05.03

    WANG Xiaoming, LI Jun, ZHANG Shenghu, et al. Adaptive sample selection algorithm based on sparse recovery spectral similarity[J]. Systems Engineering and Electronics, 2018, 40(5): 976–981. doi: 10.3969/j.issn.1001-506X.2018.05.03
    [24]
    张圣鹋, 何子述, 李军, 等. 一种稳健的知识辅助STAP色加载系数优化算法[J]. 电子与信息学报, 2016, 38(8): 1942–1949. doi: 10.11999/JEIT151335

    ZHANG Shenghu, HE Zishu, LI Jun, et al. A robust colored-loading factor optimization approach for KA-STAP[J]. Journal of Electronics &Information Technology, 2016, 38(8): 1942–1949. doi: 10.11999/JEIT151335
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (710) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return