Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Qingtao WU, Junru SHI, Mingchuan ZHANG, Qianyu WANG, Junlong ZHU, Hongke ZHANG. A Three-level Name Lookup Method Based on Deep Bloom Filter for Named Data Networking[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3597-3604. doi: 10.11999/JEIT200766
Citation: Qingtao WU, Junru SHI, Mingchuan ZHANG, Qianyu WANG, Junlong ZHU, Hongke ZHANG. A Three-level Name Lookup Method Based on Deep Bloom Filter for Named Data Networking[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3597-3604. doi: 10.11999/JEIT200766

A Three-level Name Lookup Method Based on Deep Bloom Filter for Named Data Networking

doi: 10.11999/JEIT200766
Funds:  The National Natural Science Foundation of China (61871430, 61976243), The Leading Talents of Science and Technology in the Central Plain of China (214200510012), The Basic Research Projects in the University of Henan Province (19zx010), The Key Project of the Education Department Henan Province (20A520011)
  • Received Date: 2020-08-27
  • Rev Recd Date: 2021-09-24
  • Available Online: 2021-10-22
  • Publish Date: 2021-12-21
  • A three-level name lookup method based on deep Bloom filter is proposed to improve the searching efficiency of content name in the routing progress of the Named Data Networking (NDN). Firstly, in this method, the Long Short Term Memory (LSTM) is combined with standard Bloom filter to optimize the name searching progress. Secondly, a three-level structure is adopted to optimize the accurate content name lookup progresses in the Content Store (CS) and the Pending Interest Table (PIT) to promote lookup accuracy and reduce memory consumption. Finally, the error rate generated by content name searching method based on deep Bloom filter structure is analyzed in theory, and the experiment results prove that the proposed the three-level lookup structure can compress memory and decrease the error effectively.
  • loading
  • [1]
    杨国威, 徐泓, 李丹, 等. 未来互联网体系结构研究现状与趋势[J]. 中国基础科学, 2018, 20(3): 32–34. doi: 10.3969/j.issn.1009-2412.2018.03.006

    YANG Guowei, XU Hong, LI Dan, et al. Research status and trends of future internet architecture[J]. China Basic Science, 2018, 20(3): 32–34. doi: 10.3969/j.issn.1009-2412.2018.03.006
    [2]
    黄韬, 刘江, 霍如, 等. 未来网络体系架构研究综述[J]. 通信学报, 2014, 35(8): 184–197. doi: 10.3969/j.issn.1000-436x.2014.08.023

    HUANG Tao, LIU Jiang, HUO Ru, et al. Survey of research on future network architectures[J]. Journal on Communications, 2014, 35(8): 184–197. doi: 10.3969/j.issn.1000-436x.2014.08.023
    [3]
    YAO Haipeng, LI Mengnan, DU Jun, et al. Artificial intelligence for information-centric networks[J]. IEEE Communications Magazine, 2019, 57(6): 47–53. doi: 10.1109/MCOM.2019.1800734
    [4]
    ZHANG Lixia, AFANASYEV A, BURKE J, et al. Named data networking[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(3): 66–73. doi: 10.1145/2656877.2656887
    [5]
    伊鹏, 李根, 张震. 内容中心网络中能耗优化的隐式协作缓存机制[J]. 电子与信息学报, 2018, 40(4): 770–777. doi: 10.11999/JEIT170635

    YI Peng, LI Gen, and ZHANG Zhen. Energy optimized implicit collaborative caching scheme for content centric networking[J]. Journal of Electronics &Information Technology, 2018, 40(4): 770–777. doi: 10.11999/JEIT170635
    [6]
    GRITTER M and CHERITON D R. An architecture for content routing support in the Internet[C]. Proceedings of the 3rd USENIX Symposium on Internet Technologies and Systems, San Francisco, USA, 2001: 4.
    [7]
    BARI M F, CHOWDHURY S R, AHMED R, et al. A survey of naming and routing in information-centric networks[J]. IEEE Communications Magazine, 2012, 50(12): 44–53. doi: 10.1109/MCOM.2012.6384450
    [8]
    许志伟, 陈波, 张玉军. 针对层次化名字路由的聚合机制[J]. 软件学报, 2019, 30(2): 381–398. doi: 10.13328/j.cnki.jos.005572

    XU Zhiwei, CHEN Bo, and ZHANG Yujun. Hierarchical name-based route aggregation scheme[J]. Journal of Software, 2019, 30(2): 381–398. doi: 10.13328/j.cnki.jos.005572
    [9]
    FREDKIN E. Trie memory[J]. Communications of the ACM, 1960, 3(9): 490–499. doi: 10.1145/367390.367400
    [10]
    DHARMAPURIKAR S, KRISHNAMURTHY P, and TAYLOR D E. Longest prefix matching using bloom filters[J]. IEEE/ACM Transactions on Networking, 2006, 14(2): 397–409. doi: 10.1109/TNET.2006.872576
    [11]
    TAN Yun and ZHU Shuhua. Efficient name lookup scheme based on hash and character trie in named data networking[C]. Proceedings of the 12th Web Information System and Application Conference, Ji’nan, China, 2015: 130–135. doi: 10.1109/WISA.2015.72.
    [12]
    KRASKA T, BEUTEL A, CHI E H, et al. The case for learned index structures[EB/OL]. https://arxiv.org/abs/1712.01208, 2020.
    [13]
    MITZENMACHER M. Optimizing learned bloom filters by sandwiching[EB/OL]. https://arxiv.org/abs/1803.01474, 2018.
    [14]
    LI Fu, CHEN Fuyu, WU Jianming, et al. Fast longest prefix name lookup for content-centric network forwarding[C]. Proceedings of the 8th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, Austin, USA, 2012: 73–74. doi: 10.1145/2396556.2396569.
    [15]
    LI Dagang, LI Junmao, and DU Zheng. An improved trie-based name lookup scheme for named data networking[C]. Proceedings of 2016 IEEE Symposium on Computers and Communication, Messina, Italy, 2016: 1294–1296.
    [16]
    LEE J, SHIM M, and LIM H. Name prefix matching using bloom filter pre-searching for content centric network[J]. Journal of Network and Computer Application, 2016, 65: 36–47. doi: 10.1016/j.jnca.2016.02.008
    [17]
    GOVINDARAJAN P, SOUNDARAPANDIAN R K, GANDOMI A H, et al. Classification of stroke disease using machine learning algorithms[J]. Neural Computing and Applications, 2020, 32(3): 817–828. doi: 10.1007/s00521-019-04041-y
    [18]
    SUTSKEVER I, VINYALS O, and LE Q V. Sequence to sequence learning with neural networks[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 3104–3112.
    [19]
    CHO K, VAN MËRRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734. doi: 10.3115/v1/D14-1179.
    [20]
    BLOOM B H. Space/time trade-offs in hash coding with allowable errors[J]. Communications of the ACM, 1970, 13(7): 422–426. doi: 10.1145/362686.362692
    [21]
    BRODER A and MITZENMACHER M. Network applications of bloom filters: A survey[J]. Internet Mathematics, 2004, 1(4): 485–509. doi: 10.1080/15427951.2004.10129096
    [22]
    [23]
    WANG Qianyu, WU Qingtao, ZHANG Mingchuan, et al. Learned bloom-filter for an efficient name lookup in information-centric networking[C]. Proceedings of 2019 IEEE Wireless Communications and Networking Conference, Marrakesh, Morocco, 2019: 1–6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (572) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return