Citation: | Jiulun FAN, Mengfei GAO, Haiyan YU, Binbin CHEN. Cutset-type Possibilistic C-means Clustering Algorithms Based on Semi-supervised Information[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2378-2385. doi: 10.11999/JEIT200757 |
[1] |
章毓晋. 图像分割[M]. 北京: 科学出版社, 2001: 1–5.
ZHANG Yujin. Image Segmentation[M]. Beijing: Science Press, 2001: 1–5.
|
[2] |
范九伦. 灰度图像阈值分割法[M]. 北京: 科学出版社, 2019: 1–7.
FAN Jiulun. Gray Image Thresholding Segmentation Methods[M]. Beijing: Science Press, 2019: 1–7.
|
[3] |
ZHANG Yingchun, GUO He, CHEN Feng, et al. Weighted kernel mapping model with spring simulation based watershed transformation for level set image segmentation[J]. Neurocomputing, 2017, 249: 1–18. doi: 10.1016/j.neucom.2017.01.044
|
[4] |
胡炎, 单子力, 高峰. 基于增强指数加权均值比的SAR图像边缘检测算法[J]. 电子与信息学报, 2018, 40(5): 1166–1172. doi: 10.11999/JEIT170806
HU Yan, SHAN Zili, and GAO Feng. Edge detection algorithm for SAR image based on enhanced ROEWA[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1166–1172. doi: 10.11999/JEIT170806
|
[5] |
赵凤, 孙文静, 刘汉强, 等. 基于近邻搜索花授粉优化的直觉模糊聚类图像分割[J]. 电子与信息学报, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428
ZHAO Feng, SUN Wenjing, LIU Hanqiang, et al. Intuitionistic fuzzy clustering image segmentation based on flower pollination optimization with nearest neighbor searching[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428
|
[6] |
BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[J]. Advanced Applications in Pattern Recognition, 1981, 22(1171): 203–239. doi: 10.1007/978-1-4757-0450-1
|
[7] |
KRISHNAPURAM R and KELLER J M. A possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98–110. doi: 10.1109/91.227387
|
[8] |
BARNI M, CAPPELLINI V, and MECOCCI A. Comments on "A possibilistic approach to clustering"[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 393–396. doi: 10.1109/91.531780
|
[9] |
KRISHNAPURAM R and KELLER J M. The possibilistic C-means algorithm: Insights and recommendations[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 385–392. doi: 10.1109/91.531779
|
[10] |
PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy C-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517–530. doi: 10.1109/TFUZZ.2004.840099
|
[11] |
MEMON K H, MEMON S, QURESHI M A, et al. Kernel possibilistic fuzzy c-means clustering with local information for image segmentation[J]. International Journal of Fuzzy Systems, 2019, 21(1): 321–332. doi: 10.1007/s40815-018-0537-9
|
[12] |
YU Haiyan and FAN Jiulun. Cutset-type possibilistic C-means clustering algorithm[J]. Applied Soft Computing, 2018, 64: 401–422. doi: 10.1016/j.asoc.2017.12.024
|
[13] |
YASUNORI E, YUKIHIRO H, MAKITO Y, et al. On semi-supervised fuzzy c-means clustering[C]. 2009 IEEE International Conference on Fuzzy Systems, Jeju Island, South Korea, 2009: 1119–1124. doi: 10.1109/FUZZY.2009.5277177.
|
[14] |
YIN Xuesong, SHU Ting, and HUANG Qi. Semi-supervised fuzzy clustering with metric learning and entropy regularization[J]. Knowledge-Based Systems, 2012, 35: 304–311. doi: 10.1016/j.knosys.2012.05.016
|
[15] |
赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法[J]. 电子与信息学报, 2019, 41(5): 1106–1113. doi: 10.12000/JEIT180605
ZHAO Feng, ZHANG Mimi, and LIU Hanqiang. Multi-objective evolutionary semi-supervised fuzzy clustering image segmentation motivated by region information[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1106–1113. doi: 10.12000/JEIT180605
|
[16] |
REN Xiaofeng and MALIK J. Learning a classification model for segmentation[C]. The Ninth IEEE International Conference on Computer Vision, Nice, France, 2003: 10–17. doi: 10.1109/ICCV.2003.1238308.
|
[17] |
SHI Jianbo and MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888–905. doi: 10.1109/34.868688
|
[18] |
COMANICIU D and MEER P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603–619. doi: 10.1109/34.1000236
|
[19] |
GONG Yuejiao and ZHOU Yicong. Differential evolutionary superpixel segmentation[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1390–1404. doi: 10.1109/TIP.2017.2778569
|
[20] |
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
|
[21] |
LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy c-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1753–1766. doi: 10.1109/TFUZZ.2018.2889018
|
[22] |
PEDRYCZ W. Shadowed sets: Representing and processing fuzzy sets[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
|
[23] |
雒僖, 范九伦, 于海燕, 等. 基于阴影集的截集式可能性C-均值聚类截集门限的选取[J]. 计算机科学, 2019, 46(8): 249–254. doi: 10.11896/j.issn.1002-137X.2019.08.041
LUO Xi, FAN Jiulun, YU Haiyan, et al. Selection of cutset threshold for cutset-type possibilistic C-means clustering based on shadowed set[J]. Computer Science, 2019, 46(8): 249–254. doi: 10.11896/j.issn.1002-137X.2019.08.041
|
[24] |
ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161
|