Advanced Search
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Jiulun FAN, Mengfei GAO, Haiyan YU, Binbin CHEN. Cutset-type Possibilistic C-means Clustering Algorithms Based on Semi-supervised Information[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2378-2385. doi: 10.11999/JEIT200757
Citation: Jiulun FAN, Mengfei GAO, Haiyan YU, Binbin CHEN. Cutset-type Possibilistic C-means Clustering Algorithms Based on Semi-supervised Information[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2378-2385. doi: 10.11999/JEIT200757

Cutset-type Possibilistic C-means Clustering Algorithms Based on Semi-supervised Information

doi: 10.11999/JEIT200757
Funds:  The National Natural Science Foundation of China (62071378, 62071379, 62071380), New Star Team of Xi’an University of Posts & Telecommunications (xyt2016-01)
  • Received Date: 2020-08-26
  • Rev Recd Date: 2021-01-22
  • Available Online: 2021-02-23
  • Publish Date: 2021-08-10
  • Cutset-type Possibilistic C-Means clustering (C-PCM) algorithm can significantly reduce the coincident clustering phenomenon of the Possibilistic C-Means clustering (PCM) algorithm by introducing the cut-set concept into the PCM. The C-PCM also has strong robustness to noise and outliers. However, the C-PCM still suffers from the center migration problem for datasets with small targets. In order to solve this problem, a Semi-Supervised Cutset-type Possibility C-Means (SS-C-PCM) clustering algorithm is proposed by introducing the semi-supervised learning mechanism into the objective function of the C-PCM and utilizing some prior information to guide the clustering process. Meanwhile, in order to improve the segmentation efficiency and accuracy of color images, a differential evolutionary superpixel-based Semi-Supervised Cutset-type Possibilistic C-Means (desSS-C-PCM) clustering algorithm is proposed. In the desSS-C-PCM, the Differential Evolutionary Superpixel(DES) algorithm is used to obtain the spatial neighborhood information of an image, which is integrated into the objective function of the semi-supervised C-PCM to improve the segmentation quality. Simultaneously, the color histogram is used to reconstruct the new objective function to reduce the computational complexity of the algorithm. Several experiments of artificial data clustering and color image segmentation show that the proposed algorithm can effectively improve the clustering effect of datasets with small targets and the execution efficiency compared with several related algorithms.
  • loading
  • [1]
    章毓晋. 图像分割[M]. 北京: 科学出版社, 2001: 1–5.

    ZHANG Yujin. Image Segmentation[M]. Beijing: Science Press, 2001: 1–5.
    [2]
    范九伦. 灰度图像阈值分割法[M]. 北京: 科学出版社, 2019: 1–7.

    FAN Jiulun. Gray Image Thresholding Segmentation Methods[M]. Beijing: Science Press, 2019: 1–7.
    [3]
    ZHANG Yingchun, GUO He, CHEN Feng, et al. Weighted kernel mapping model with spring simulation based watershed transformation for level set image segmentation[J]. Neurocomputing, 2017, 249: 1–18. doi: 10.1016/j.neucom.2017.01.044
    [4]
    胡炎, 单子力, 高峰. 基于增强指数加权均值比的SAR图像边缘检测算法[J]. 电子与信息学报, 2018, 40(5): 1166–1172. doi: 10.11999/JEIT170806

    HU Yan, SHAN Zili, and GAO Feng. Edge detection algorithm for SAR image based on enhanced ROEWA[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1166–1172. doi: 10.11999/JEIT170806
    [5]
    赵凤, 孙文静, 刘汉强, 等. 基于近邻搜索花授粉优化的直觉模糊聚类图像分割[J]. 电子与信息学报, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428

    ZHAO Feng, SUN Wenjing, LIU Hanqiang, et al. Intuitionistic fuzzy clustering image segmentation based on flower pollination optimization with nearest neighbor searching[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428
    [6]
    BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[J]. Advanced Applications in Pattern Recognition, 1981, 22(1171): 203–239. doi: 10.1007/978-1-4757-0450-1
    [7]
    KRISHNAPURAM R and KELLER J M. A possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98–110. doi: 10.1109/91.227387
    [8]
    BARNI M, CAPPELLINI V, and MECOCCI A. Comments on "A possibilistic approach to clustering"[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 393–396. doi: 10.1109/91.531780
    [9]
    KRISHNAPURAM R and KELLER J M. The possibilistic C-means algorithm: Insights and recommendations[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 385–392. doi: 10.1109/91.531779
    [10]
    PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy C-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517–530. doi: 10.1109/TFUZZ.2004.840099
    [11]
    MEMON K H, MEMON S, QURESHI M A, et al. Kernel possibilistic fuzzy c-means clustering with local information for image segmentation[J]. International Journal of Fuzzy Systems, 2019, 21(1): 321–332. doi: 10.1007/s40815-018-0537-9
    [12]
    YU Haiyan and FAN Jiulun. Cutset-type possibilistic C-means clustering algorithm[J]. Applied Soft Computing, 2018, 64: 401–422. doi: 10.1016/j.asoc.2017.12.024
    [13]
    YASUNORI E, YUKIHIRO H, MAKITO Y, et al. On semi-supervised fuzzy c-means clustering[C]. 2009 IEEE International Conference on Fuzzy Systems, Jeju Island, South Korea, 2009: 1119–1124. doi: 10.1109/FUZZY.2009.5277177.
    [14]
    YIN Xuesong, SHU Ting, and HUANG Qi. Semi-supervised fuzzy clustering with metric learning and entropy regularization[J]. Knowledge-Based Systems, 2012, 35: 304–311. doi: 10.1016/j.knosys.2012.05.016
    [15]
    赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法[J]. 电子与信息学报, 2019, 41(5): 1106–1113. doi: 10.12000/JEIT180605

    ZHAO Feng, ZHANG Mimi, and LIU Hanqiang. Multi-objective evolutionary semi-supervised fuzzy clustering image segmentation motivated by region information[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1106–1113. doi: 10.12000/JEIT180605
    [16]
    REN Xiaofeng and MALIK J. Learning a classification model for segmentation[C]. The Ninth IEEE International Conference on Computer Vision, Nice, France, 2003: 10–17. doi: 10.1109/ICCV.2003.1238308.
    [17]
    SHI Jianbo and MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888–905. doi: 10.1109/34.868688
    [18]
    COMANICIU D and MEER P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603–619. doi: 10.1109/34.1000236
    [19]
    GONG Yuejiao and ZHOU Yicong. Differential evolutionary superpixel segmentation[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1390–1404. doi: 10.1109/TIP.2017.2778569
    [20]
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
    [21]
    LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy c-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1753–1766. doi: 10.1109/TFUZZ.2018.2889018
    [22]
    PEDRYCZ W. Shadowed sets: Representing and processing fuzzy sets[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 1998, 28(1): 103–109. doi: 10.1109/3477.658584
    [23]
    雒僖, 范九伦, 于海燕, 等. 基于阴影集的截集式可能性C-均值聚类截集门限的选取[J]. 计算机科学, 2019, 46(8): 249–254. doi: 10.11896/j.issn.1002-137X.2019.08.041

    LUO Xi, FAN Jiulun, YU Haiyan, et al. Selection of cutset threshold for cutset-type possibilistic C-means clustering based on shadowed set[J]. Computer Science, 2019, 46(8): 249–254. doi: 10.11896/j.issn.1002-137X.2019.08.041
    [24]
    ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (1377) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return