Citation: | Kaijun WANG, Yuanpeng ZENG, Zhongjian MIAO. Different-region Balance Method for Exploring Varying Causal Relations Between Time Series[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2414-2420. doi: 10.11999/JEIT200756 |
[1] |
XIE Feng, CAI Ruichu, ZENG Yan, et al. An efficient entropy-based causal discovery method for linear structural equation models with IID noise variables[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1667–1680. doi: 10.1109/TNNLS.2019.2921613
|
[2] |
YANG Jing, GUO Xiaoxue, AN Ning, et al. Streaming feature-based causal structure learning algorithm with symmetrical uncertainty[J]. Information Sciences, 2018, 467: 708–724. doi: 10.1016/j.ins.2018.04.076
|
[3] |
任伟杰, 韩敏. 多元时间序列因果关系分析研究综述[J/OL]. 自动化学报, https://doi.org/10.16383/j.aas.c180189, 2019.
REN Weijie and HAN Min. Survey on causality analysis of multivariate time series[J/OL]. Acta Automatica Sinica, https://doi.org/10.16383/j.aas.c180189, 2019.
|
[4] |
HUANG Biwei, ZHANG Kun, GONG Mingming, et al. Causal discovery and forecasting in nonstationary environments with state-space models[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019.
|
[5] |
DU Sizhen, SONG Guojie, HAN Lei, et al. Temporal causal inference with time lag[J]. Neural Computation, 2018, 30(1): 271–291. doi: 10.1162/neco_a_01028
|
[6] |
GRANGER C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424–438. doi: 10.2307/1912791
|
[7] |
ORJUELA-CAÑÓN A D, CERQUERA A, FREUND J A, et al. Sleep apnea: Tracking effects of a first session of CPAP therapy by means of Granger causality[J]. Computer Methods and Programs in Biomedicine, 2020, 187: 105235. doi: 10.1016/j.cmpb.2019.105235
|
[8] |
范立夫, 赵善学, 张永军. 信贷结构和产业结构的相互影响研究——基于异质面板数据的格兰杰因果检验[J]. 宏观经济研究, 2019(6): 73–82. doi: 10.16304/j.cnki.11-3952/f.2019.06.007
FAN Lifu, ZHAO Shanxue, and ZHANG Yongjun. Research on the interaction between credit structure and industrial structure——Granger causality test based on heterogeneous panel data[J]. Scientific Management Research, 2019(6): 73–82. doi: 10.16304/j.cnki.11-3952/f.2019.06.007
|
[9] |
李永立, 吴冲. 基于多变量的Granger因果检验方法[J]. 数理统计与管理, 2014, 33(1): 50–58. doi: 10.13860/j.cnki.sltj.2014.01.003
LI Yongli and WU Chong. The Granger causality test method based on the multiple variables[J]. Journal of Applied Statistics and Management, 2014, 33(1): 50–58. doi: 10.13860/j.cnki.sltj.2014.01.003
|
[10] |
REN Weijie, LI Baisong, and HAN Min. A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series[J]. Physica A: Statistical Mechanics and its Applications, 2020, 541: 123245. doi: 10.1016/j.physa.2019.123245
|
[11] |
FINKLE J D, WU J J, and BAGHERI N. Windowed Granger causal inference strategy improves discovery of gene regulatory networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2252–2257. doi: 10.1073/pnas.1710936115
|
[12] |
CHANG T, TSAI S L, and HAGA K Y A. Uncovering the interrelationship between the U. S. stock and housing markets: A bootstrap rolling window Granger causality approach[J]. Applied Economics, 2017, 49(58): 5841–5848. doi: 10.1080/00036846.2017.1346365
|
[13] |
LI Zhenhui, ZHENG Guanjie, AGARWAL A, et al. Discovery of causal time intervals[C]. 2017 SIAM International Conference on Data Mining, Houston, USA, 2017: 804–812.
|
[14] |
MASNADI-SHIRAZI M, MAURYA M R, PAO G, et al. Time varying causal network reconstruction of a mouse cell cycle[J]. BMC Bioinformatics, 2019, 20: 294. doi: 10.1186/s12859-019-2895-1
|
[15] |
AMORNBUNCHORNVEJ C, ZHELEVA E, and BERGER-WOLF T Y. Variable-lag granger causality for time series analysis[C]. 2019 IEEE International Conference on Data Science and Advanced Analytics, Washington, USA, 2019.
|