Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Xi CHENG, Zhiyong ZHANG. An Uncertainty Analysis Method of Wave Propagation in Complex Media Based on Artificial Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3662-3670. doi: 10.11999/JEIT200755
Citation: Xi CHENG, Zhiyong ZHANG. An Uncertainty Analysis Method of Wave Propagation in Complex Media Based on Artificial Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3662-3670. doi: 10.11999/JEIT200755

An Uncertainty Analysis Method of Wave Propagation in Complex Media Based on Artificial Neural Network

doi: 10.11999/JEIT200755
Funds:  The National Natural Science Foundation of China (61701427)
  • Received Date: 2020-08-26
  • Rev Recd Date: 2021-09-11
  • Available Online: 2021-10-28
  • Publish Date: 2021-12-21
  • Soil materials can exhibit strongly dispersive properties in the operating frequency range of a physical system, and the uncertain parameters of the dispersive materials introduce uncertainties in the simulation result of propagating waves. It is essential to quantify the uncertainty in the simulation result when the acceptability of these calculation results is considered. To avoid performing thousands of full-wave simulations, an efficient surrogate model based on ANN (Artificial Neural Network) is proposed, to imitate the concerned Ground Penetrating Radar (GPR) calculation. Meanwhile, the process of constructing the surrogate model and the strategy to overcome the overfitting problem are presented in details. As a surrogate model for full-wave simulation of ground penetrating radar, it can predict the simulation result, and then obtain the statistical information of the simulation result, such as mean value and standard deviation. After comparison, under the same conditions that the same numerical model, the number of uncertain input parameters are same, and the variation in the parameter is 10%, the statistical properties of the prediction results obtained by the proposed method are in good agreement with the results obtained by performing a thousand full-wave simulations. It also significantly reduces the amount of calculations, and the calculation time efficiency is increased by 79.82%.
  • loading
  • [1]
    TEIXEIRA F L, CHEW W C, STRAKA M, et al. Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1928–1937. doi: 10.1109/36.729364
    [2]
    戴世坤, 欧阳振崇, 周印明, 等. 探地雷达频率域2.5维正演[J]. 电子与信息学报, 2021, 43(1): 145–153. doi: 10.11999/JEIT190988

    DAI Shikun, OUYANG Zhenchong, ZHOU Yinming, et al. Frequency domain 2.5D GPR forward modeling[J]. Journal of Electronics &Information Technology, 2021, 43(1): 145–153. doi: 10.11999/JEIT190988
    [3]
    侯斐斐, 施荣华, 雷文太, 等. 面向探地雷达B-scan图像的目标检测算法综述[J]. 电子与信息学报, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680

    HOU Feifei, SHI Ronghua, LEI Wentai, et al. A review of target detection algorithm for GPR B-scan processing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680
    [4]
    GRANDJEAN G, GOURRY J C, and BITRI A. Evaluation of GPR techniques for civil-engineering applications: Study on a test site[J]. Journal of Applied Geophysics, 2000, 45(3): 141–156. doi: 10.1016/S0926-9851(00)00021-5
    [5]
    GADER P D, MYSTKOWSKI M, and ZHAO Yunxin. Landmine detection with ground penetrating radar using hidden Markov models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6): 1231–1244. doi: 10.1109/36.927446
    [6]
    TAFLOVE A and HAGNESS S. Computational Electrodynamics: The Finite-Difference Time-Domain Method[M]. 2nd ed. Boston, USA: Artech House, 2000: 120–350.
    [7]
    SUDRET B. Uncertainty propagation and sensitivity analysis in mechanical models contributions to structural reliability and stochastic spectral methods[D]. [Ph. D. dissertation], Université Blaise Pascal, 2007: 100–300.
    [8]
    CHENG X, SHAO W, WANG K, et al. Uncertainty analysis in dispersive and lossy media for ground-penetrating radar modeling[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1931–1935. doi: 10.1109/LAWP.2019.2933777
    [9]
    MCKAY M D, BECKMAN R J, and CONOVER W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239–245. doi: 10.1080/00401706.1979.10489755
    [10]
    KARLIK B and OLGAC A V. Performance analysis of various activation functions in Generalized MLP architectures of neural networks[J]. International Journal of Artificial Intelligence and Expert Systems, 2011, 1(4): 111–122.
    [11]
    SRIVASTAVA N. Improving neural networks with dropout[D]. [Master dissertation], University of Toronto, 2013: 3–20.
    [12]
    KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [13]
    WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive Survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4–24. doi: 10.1109/TNNLS.2020.2978386
    [14]
    ZHANG Xianming, HAN Qinglong, and GE Xiaohua. An overview of neuronal state estimation of neural networks with time-varying delays[J]. Information Sciences, 2019, 478: 83–99. doi: 10.1016/j.ins.2018.11.001
    [15]
    TANAKA G, NAKANE R, TAKEUCHI T, et al. Spatially arranged sparse recurrent neural networks for energy efficient associative memory[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(1): 24–38. doi: 10.1109/TNNLS.2019.2899344
    [16]
    ZHOU Xiaomin, LI Chen, RAHAMAN M M, et al. A comprehensive review for breast histopathology image analysis using classical and deep neural networks[J]. IEEE Access, 2020, 8: 90931–90956. doi: 10.1109/ACCESS.2020.2993788
    [17]
    梁振清, 陈生. 基于深度学习和雷达观测的华南短临预报精度评估[J]. 气象研究与应用, 2020, 41(1): 41–47. doi: 10.19849/j.cnki.CN45-1356/P.2020.1.09

    LIANG Zhenqing and CHEN Sheng. Accuracy evaluation of nowcasting in South China based on deep learning and radar observation[J]. Journal of Meteorological Research and Application, 2020, 41(1): 41–47. doi: 10.19849/j.cnki.CN45-1356/P.2020.1.09
    [18]
    SMITHA N and SINGH V. Target detection using supervised machine learning algorithms for GPR data[J]. Sensing and Imaging, 2020, 21(1): 11. doi: 10.1007/s11220-020-0273-8
    [19]
    KANG M S, KIM N, LEE J J, et al. Deep learning-based automated underground cavity detection using three-dimensional ground penetrating radar[J]. Structural Health Monitoring, 2020, 19(1): 173–185. doi: 10.1177/1475921719838081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (628) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return