Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Li JIANG, Wenqing SHANG, Junni ZHOU, Mingfei WEI, Yanni WANG. A Second-order Squeezed Wavelet Transform Algorithm for Seismic Signal Analysis[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3710-3717. doi: 10.11999/JEIT200753
Citation: Li JIANG, Wenqing SHANG, Junni ZHOU, Mingfei WEI, Yanni WANG. A Second-order Squeezed Wavelet Transform Algorithm for Seismic Signal Analysis[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3710-3717. doi: 10.11999/JEIT200753

A Second-order Squeezed Wavelet Transform Algorithm for Seismic Signal Analysis

doi: 10.11999/JEIT200753
Funds:  The National Natural Science Foundation of China (61803294, 61803293), Shaanxi Province Science and Technology Plan Project(2020JQ-684, 2020JM-499)
  • Received Date: 2020-08-25
  • Rev Recd Date: 2020-12-23
  • Available Online: 2021-02-27
  • Publish Date: 2021-12-21
  • Seismic signal is of great significance in the detection of geological lithology, reservoir, fluid and sedimentary facies, as well as the identification of stratigraphic interface, reservoir analysis, seismic data processing and interpretation. In view of the problems of low time-frequency resolution and poor energy aggregation when the traditional time-frequency analysis algorithms process seismic signals, a new 2nd-order Synchrosqueezing Wavelet Transform (SWT2) algorithm is proposed based on the model of Ricker wavelet. The proposed second-order squeezing algorithm uses the improved mother wavelet to match the seismic signals, and then corrects the reference frequency through spectral peak alignment, thus improving the time-frequency energy concentration and time-frequency resolution. Simulation results show that the proposed method can greatly improve the time-frequency aggregation, accurately reflect the time delay and dominant frequency of signals, and describe the stratigraphic structure more accurately.
  • loading
  • [1]
    黄昱丞, 郑晓东, 栾奕, 等. 地震信号线性与非线性时频分析方法对比[J]. 石油地球物理勘探, 2018, 53(5): 975–989. doi: 10.13810/j.cnki.issn.1000-7210.2018.05.011

    HUANG Yucheng, ZHENG Xiaodong, LUAN Yi, et al. Comparison of linear and nonlinear time-frequency analysis methods for seismic signals[J]. Oil Geophysical Prospecting, 2018, 53(5): 975–989. doi: 10.13810/j.cnki.issn.1000-7210.2018.05.011
    [2]
    OKAYA D A, KARAGEORGI E, MCEVILLY T V, et al. Removing vibrator-induced correlation artifacts by filtering in frequency-uncorrelated time space[J]. Geophysics, 1992, 57(7): 916–926. doi: 10.1190/1.1443304
    [3]
    SINHA S, ROUTH P S, ANNO P D, et al. Spectral decomposition of seismic data with continuous-wavelet transform[J]. Geophysics, 2005, 70(6): 29–25. doi: 10.1190/1.2127113
    [4]
    郝国成, 谈帆, 程卓, 等. 强鲁棒性和高锐化聚集度的BGabor-NSPWVD时频分析算法[J]. 自动化学报, 2019, 45(3): 566–576. doi: 10.16383/j.aas.c170530

    HAO Guocheng, TAN Fan, CHENG Zhuo, et al. Time-frequency analysis of BGabor-NSPWVD algorithm with strong robustness and high sharpening concentration[J]. Acta Automatica Sinica, 2019, 45(3): 566–576. doi: 10.16383/j.aas.c170530
    [5]
    郑成龙, 王宝善. S变换在地震资料处理中的应用及展望[J]. 地球物理学进展, 2015, 30(4): 1580–1591. doi: 10.6038/pg20150412

    ZHENG Chenlong and WANG Baoshan. Applications of stransform in seismic data processing[J]. Progress in Geophysics, 2015, 30(4): 1580–1591. doi: 10.6038/pg20150412
    [6]
    严海滔, 黄饶, 周怀来, 等. 同步挤压广义S变换在南海油气识别中的应用[J]. 地球物理学进展, 2019, 34(3): 1229–1235. doi: 10.6038/pg2019CC0143

    YAN Haitao, HUANG Rao, ZHOU Huailai, et al. Application of Nanhai oil and gas identification based on synchrosqueezing generalized S transform[J]. Progress in Geophysics, 2019, 34(3): 1229–1235. doi: 10.6038/pg2019CC0143
    [7]
    HERRERA R H, HAN Jiajun, and VAN DER BAAN M. Applications of the synchrosqueezing transform in seismic time-frequency analysis[J]. Geophysics, 2014, 79(3): V55–V64. doi: 10.1190/geo2013-0204.1
    [8]
    包乾宗, 许杰, 许明瑞. 高铁地震信号时频特征对比分析[J]. 北京大学学报: 自然科学版, 2019, 55(5): 804–811. doi: 10.13209/j.0479-8023.2019.076

    BAO Qianzong, XU Jie, and XU Mingrui. Comparative analysis of time-frequency characteristics of seismic signal induced by high-speed train[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(5): 804–811. doi: 10.13209/j.0479-8023.2019.076
    [9]
    XUE Yajuan, CAO Junxing, WANG Daxing, et al. Application of the variational-mode decomposition for seismic time–frequency analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3821–3831. doi: 10.1109/JSTARS.2016.2529702
    [10]
    HAN Jiajun and VAN DER BAAN M. Empirical mode decomposition for seismic time-frequency analysis[J]. Geophysics, 2013, 78(2): O9–O19. doi: 10.1190/geo2012-0199.1
    [11]
    DAUBECHIES I, LU Jianfeng, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261. doi: 10.1016/j.acha.2010.08.002
    [12]
    李林, 王林, 韩红霞, 等. 自适应时频同步压缩算法研究[J]. 电子与信息学报, 2020, 42(2): 438–444. doi: 10.11999/JEIT190146

    LI Lin, WANG Lin, HANG Hongxia, et al. Research on the adaptive synchrosqueezing algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(2): 438–444. doi: 10.11999/JEIT190146
    [13]
    LI Lin, CAI Haiyan, HAN Hongxia, et al. Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation[J]. Signal Processing, 2020, 166: 107231. doi: 10.1016/j.sigpro.2019.07.024
    [14]
    沈微, 陶新民, 高珊, 等. 基于同步挤压小波变换的振动信号自适应降噪方法[J]. 振动与冲击, 2018, 37(14): 239–247. doi: 10.13465/j.cnki.jvs.2018.14.034

    SHEN Wei, TAO Xinmin, GAO Shan, et al. Self-adaptive de-noising algorithm for vibration signals based on synchrosqueezed wavelet transforms[J]. Journal of Vibration and Shock, 2018, 37(14): 239–247. doi: 10.13465/j.cnki.jvs.2018.14.034
    [15]
    黄忠来, 张建中, 邹志辉. 二阶同步挤压S变换及其在地震谱分解中的应用[J]. 地球物理学报, 2017, 60(7): 2833–2844. doi: 10.6038/cjg20170728

    HUANG Zhonglai, ZHANG Jianzhong, and ZOU Zhihui. A second-order synchrosqueezing S-transform and its application in seismic spectral decomposition[J]. Chinese Journal of Geophysics, 2017, 60(7): 2833–2844. doi: 10.6038/cjg20170728
    [16]
    STANKOVIĆ L. A measure of some time–frequency distributions concentration[J]. Signal Processing, 2001, 81(3): 621–631. doi: 10.1016/S0165-1684(00)00236-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1084) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return