Citation: | Shibao LI, Yiwei ZHANG, Jianhang LIU, Xuerong CUI, Yucheng ZHANG. Recommendation Model Based on Public Neighbor Sorting and Sampling of Knowledge Graph[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3522-3529. doi: 10.11999/JEIT200735 |
[1] |
ZHENG Guanjie, ZHANG Fuzheng, ZHENG Zihan, et al. DRN: A deep reinforcement learning framework for news recommendation[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 167–176. doi: 10.1145/3178876.3185994.
|
[2] |
司亚利, 张付志, 刘文远. 基于签到活跃度和时空概率模型的自适应兴趣点推荐方法[J]. 电子与信息学报, 2020, 42(3): 678–686. doi: 10.11999/JEIT190287
SI Yali, ZHANG Fuzhi, and LIU Wenyuan. An adaptive point-of-interest recommendation method based on check-in activity and temporal-spatial probabilistic models[J]. Journal of Electronics &Information Technology, 2020, 42(3): 678–686. doi: 10.11999/JEIT190287
|
[3] |
KOREN Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]. The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, USA, 2008: 426–434. doi: 10.1145/1401890.1401944.
|
[4] |
伊华伟, 张付志, 巢进波. 基于模糊核聚类和支持向量机的鲁棒协同推荐算法[J]. 电子与信息学报, 2017, 39(8): 1942–1949. doi: 10.11999/JEIT161154
YI Huawei, ZHANG Fuzhi, and CHAO Jinbo. Robust collaborative recommendation algorithm based on fuzzy kernel clustering and support vector machine[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1942–1949. doi: 10.11999/JEIT161154
|
[5] |
WANG Hongwei, ZHANG Fuzheng, HOU Min, et al. SHINE: Signed heterogeneous information network embedding for sentiment link prediction[C]. The Eleventh ACM International Conference on Web Search and Data Mining, Marina Del Rey, USA, 2018: 592–600. doi: 10.1145/3159652.3159666.
|
[6] |
CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]. The 1st Workshop on Deep Learning for Recommender Systems, Boston, USA, 2016: 7–10. doi: 10.1145/2988450.2988454.
|
[7] |
WANG Hongwei, ZHANG Fuzheng, WANG Jialin, et al. RippleNet: Propagating user preferences on the knowledge graph for recommender systems[C]. The 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 2018: 417–426. doi: 10.1145/3269206.3271739.
|
[8] |
ZHANG Fuzheng, YUAN N J, LIAN Defu, et al. Collaborative knowledge base embedding for recommender systems[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, California, San Francisco, USA, 2016: 353–362. doi: 10.1145/2939672.2939673.
|
[9] |
WANG Hongwei, ZHANG Fuzheng, XIE Xing, et al. DKN: Deep knowledge-aware network for news recommendation[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 1835–1844. doi: 10.1145/3178876.3186175.
|
[10] |
WANG Hongwei, ZHANG Fuzheng, ZHAO Miao, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]. The World Wide Web Conference, San Francisco, USA, 2019: 2000–2010. doi: 10.1145/3308558.3313411.
|
[11] |
HUANG Jin, ZHAO W X, DOU Hongjian, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, USA, 2018: 505–514. doi: 10.1145/3209978.3210017.
|
[12] |
YU Xiao, REN Xiang, SUN Yizhou, et al. Personalized entity recommendation: A heterogeneous information network approach[C]. The 7th ACM International Conference on Web Search and Data Mining, New York, USA, 2014: 283–292. doi: 10.1145/2556195.2556259.
|
[13] |
HU Binbin, SHI Chuan, ZHAO W X, et al. Leveraging meta-path based context for top- n recommendation with a neural co-attention model[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 1531–1540. doi: 10.1145/3219819.3219965.
|
[14] |
ZHAO Huan, YAO Quanming, LI Jianda, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 635–644. doi: 10.1145/3097983.3098063.
|
[15] |
WANG Xiao, WANG Ruijia, SHI Chuan, et al. Multi-component graph convolutional collaborative filtering[J]. The AAAI Conference on Artificial Intelligence, 2020, 34(4): 6267–6274. doi: 10.1609/aaai.v34i04.6094
|
[16] |
WANG Xiang, HE Xiangnan, CAO Yixin, et al. KGAT: Knowledge graph attention network for recommendation[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 950–958. doi: 10.1145/3292500.3330989.
|
[17] |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2787–2795.
|