Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Guihui XIE, Xiaoqing TANG, Xiangkai JIAO, Ruyan LI. A Lightweight Enhanced Long Range Physical Layer Design Method for Internet of Things[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3612-3620. doi: 10.11999/JEIT200734
Citation: Guihui XIE, Xiaoqing TANG, Xiangkai JIAO, Ruyan LI. A Lightweight Enhanced Long Range Physical Layer Design Method for Internet of Things[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3612-3620. doi: 10.11999/JEIT200734

A Lightweight Enhanced Long Range Physical Layer Design Method for Internet of Things

doi: 10.11999/JEIT200734
Funds:  The Natural Science Foundation of Hubei Province (2019CFB271), The Science and Technology Project of Zhongshan City(2019AG032)
  • Received Date: 2020-08-20
  • Rev Recd Date: 2021-02-07
  • Available Online: 2021-03-22
  • Publish Date: 2021-12-21
  • To improve the bit error rate performance of LoRa (Long Range) in fading channels, a lightweight Enhanced Long Range (EnLoRa) physical layer is designed. First, Cyclic Code Shift Keying (CCSK) is chosen as the error correction code, and the diagonal matrix interleaving and Chirp Spread Spectrum (CSS) modulation techniques are concatenated to construct a new Bit Interleaved Coded Modulation (BICM) structure. Then, based on this structure, a soft CSS demodulation and soft decoding algorithm based on bit log-likelihood ratio information is proposed. Further, the decoded external information is fed back to the demodulation module as a priori information for iteration decoding. The simulation results show that, compared with the LoRa system of the same code rate, the coding gain of the EnLoRa system under the Gaussian channel is increased by 0.8 dB, and the coding gain under the Rayleigh channel is increased by 7 dB. On this basis, through multiple iterations, an additional gain of up to 2.5 dB can be obtained. The time complexity is only increased by 10%, and the increase in space complexity is negligible. This method is expected to reduce further the power consumption of LoRa nodes and has great application value to complex multipath scenarios such as indoors, urban areas and industries.
  • loading
  • [1]
    CENTENARO M, VANGELISTA L, ZANELLA A, et al. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios[J]. IEEE Wireless Communications, 2016, 23(5): 60–67. doi: 10.1109/MWC.2016.7721743
    [2]
    Semtech. AN1200.22: LoRa™ modulation basics[EB/OL]. https://www.docin.com/p-1913160397.html, 2015.
    [3]
    ELSHABRAWY T and ROBERT J. Closed-form approximation of LoRa modulation BER performance[J]. IEEE Communications Letters, 2018, 22(9): 1778–1781. doi: 10.1109/LCOMM.2018.2849718
    [4]
    CATTANI M, BOANO C A, and RÖMER K. An experimental evaluation of the reliability of LoRa long-range low-power wireless communication[J]. Journal of Sensor and Actuator Networks, 2017, 6(2): 7. doi: 10.3390/jsan6020007
    [5]
    VILLARIM M R, DE LUNA J V H, DE FARIAS MEDEIROS D, et al. An evaluation of LoRa communication range in urban and forest areas: A case study in brazil and portugal[C]. The 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference, Vancouver, Canada, 2019: 827–832.
    [6]
    SELLER O B A and SORNIN N. Low power long range transmitter[P]. USA Patent, 20140219329A1, 2014.
    [7]
    ROBYNS P, QUAX P, LAMOTTE W, et al. A multi-channel software decoder for the LoRa modulation scheme[C]. The 3rd International Conference on Internet of Things, Big Data and Security, Funchal, Portugal, 2018: 1–12.
    [8]
    MARQUET A, MONTAVONT N, and PAPADOPOULOS G Z. Towards an SDR implementation of LoRa: Reverse-engineering, demodulation strategies and assessment over Rayleigh channel[J]. Computer Communications, 2020, 153: 595–605. doi: 10.1016/j.comcom.2020.02.034
    [9]
    MROUE H, NASSER A, PARREIN B, et al. Analytical and simulation study for LoRa modulation[C]. The 2018 25th International Conference on Telecommunications, Saint-Malo, France, 2018: 655–659.
    [10]
    ELSHABRAWY T and ROBERT J. Interleaved chirp spreading LoRa-based modulation[J]. IEEE Internet of Things Journal, 2019, 6(2): 3855–3863. doi: 10.1109/JIOT.2019.2892294
    [11]
    BOMFIN R, CHAFII M, and FETTWEIS G. A novel modulation for IoT: PSK-LoRa[C]. The 2019 IEEE 89th Vehicular Technology Conference, Kuala Lumpur, Malaysia, 2019, 1–5.
    [12]
    ELSHABRAWY T and ROBERT T. Enhancing LoRa capacity using non-binary single parity check codes[C]. The 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications, Limassol, Cyprus, 2018: 1–7.
    [13]
    徐浪, 陈晓莉, 田茂, 等. 基于Turbo码和ODPD判决法的LoRa改进方法[J]. 电子测量技术, 2020, 43(7): 142–147. doi: 10.19651/j.cnki.emt.1903832

    XU Lang, CHEN Xiaoli, TIAN Mao, et al. Improving method of LoRa based on Turbo code and ODPD[J]. Electronic Measurement Technology, 2020, 43(7): 142–147. doi: 10.19651/j.cnki.emt.1903832
    [14]
    朱鸿斌, 戴胜辰, 康凯, 等. 改进型极化码混合自动请求重传法[J]. 电子与信息学报, 2017, 39(5): 1136–1141. doi: 10.11999/JEIT160736

    ZHU Hongbin, DAI Shengchen, KANG Kai, et al. An improved HARQ scheme with polar codes[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1136–1141. doi: 10.11999/JEIT160736
    [15]
    DILLARD G M, REUTER M, ZEIDDLER J, et al. Cyclic code shift keying: A low probability of intercept communication technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 786–798. doi: 10.1109/TAES.2003.1238736
    [16]
    VANGELISTA L. Frequency shift chirp modulation: The LoRa modulation[J]. IEEE Signal Processing Letters, 2017, 24(12): 1818–1821. doi: 10.1109/LSP.2017.2762960
    [17]
    VALENTI M C and CHENG Shi. Iterative demodulation and decoding of Turbo-coded M-ary noncoherent orthogonal modulation[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(9): 1739–1747. doi: 10.1109/JSAC.2005.853794
    [18]
    VITERBI A J. An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(2): 260–264. doi: 10.1109/49.661114
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1041) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return