Citation: | Yaguan QIAN, Ximin ZHANG, Bin WANG, Zhaoquan GU, Wei LI, Bensheng YUN. Adversarial Training Defense Based on Second-order Adversarial Examples[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3367-3373. doi: 10.11999/JEIT200723 |
[1] |
CHICCO D, SADOWSKI P, and BALDI P. Deep autoencoder neural networks for gene ontology annotation predictions[C]. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, Newport Beach, America, 2014: 533–554.
|
[2] |
SPENCER M, EICKHOLT J, and CHENG Jianlin. A deep learning network approach to ab initio protein secondary structure prediction[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(1): 103–112. doi: 10.1109/TCBB.2014.2343960
|
[3] |
MIKOLOV T, DEORAS A, POVEY D, et al. Strategies for training large scale neural network language models[C]. 2011 IEEE Workshop on Automatic Speech Recognition & Understanding, Waikoloa, America, 2011: 196–201.
|
[4] |
HINTON G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82–97. doi: 10.1109/MSP.2012.2205597
|
[5] |
LECUN Y, KAVUKCUOGLU K, FARABET C, et al. Convolutional networks and applications in vision[C]. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 2010: 253–256.
|
[6] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe Nevada, America, 2012: 1097–1105.
|
[7] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. 2nd International Conference on Learning Representations, ICLR 2014, Banff, Canada, 2014.
|
[8] |
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32: 323–332. doi: 10.1016/j.neunet.2012.02.016
|
[9] |
CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. 2017 IEEE Symposium on Security and Privacy (SP), San Jose, America, 2017: 39–57.
|
[10] |
MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, America, 2016: 2574–2582. doi: 10.1109/CVPR.2016.282.
|
[11] |
XIE Cihang, ZHANG Zhishuai, ZHOU Yuyin, et al. Improving transferability of adversarial examples with input diversity[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, America, 2019: 2725–2734.
|
[12] |
LEE J G, JUN S, CHO Y W, et al. Deep learning in medical imaging: General overview[J]. Korean Journal of Radiology, 2017, 18(4): 570–584. doi: 10.3348/kjr.2017.18.4.570
|
[13] |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. ICLR 2018 Conference Blind Submission, Vancouver, Canada, 2018.
|
[14] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. 3rd International Conference on Learning Representations, San Diego, America, 2015.
|
[15] |
ARAUJO A, MEUNIER L, PINOT R, et al. Robust neural networks using randomized adversarial training[EB/OL]. https://arxiv.org/pdf/1903.10219.pdf, 2020.
|
[16] |
LAMB A, BINAS J, GOYAL A, et al. Fortified networks: Improving the robustness of deep networks by modeling the manifold of hidden representations[C]. ICLR 2018 Conference Blind Submission, Vancouver, Canada, 2018.
|
[17] |
XU Weilin, EVANS D, and QI Yanjun. Feature squeezing: Detecting adversarial examples in deep neural networks[C]. Network and Distributed Systems Security Symposium (NDSS), San Diego, America, 2018. doi: 10.14722/ndss.2018.23198.
|
[18] |
BELINKOV Y and BISK Y. Synthetic and natural noise both break neural machine translation[C]. ICLR 2018 Conference Blind Submission, Vancouver, Canada, 2018.
|
[19] |
YANG Yuzhe, ZHANG Guo, KATABI D, et al. ME-net: Towards effective adversarial robustness with matrix estimation[C]. Proceedings of the 36th International Conference on Machine Learning, Long Beach, America, 2019.
|