Advanced Search
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Xiaoping XIE, Xiongkun SHI. A General Least Mean Square Algorithm Based on Mean Square Deviation Analysis[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2249-2257. doi: 10.11999/JEIT200639
Citation: Xiaoping XIE, Xiongkun SHI. A General Least Mean Square Algorithm Based on Mean Square Deviation Analysis[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2249-2257. doi: 10.11999/JEIT200639

A General Least Mean Square Algorithm Based on Mean Square Deviation Analysis

doi: 10.11999/JEIT200639
  • Received Date: 2020-07-30
  • Rev Recd Date: 2020-12-07
  • Available Online: 2020-12-17
  • Publish Date: 2021-08-10
  • Whether it is the traditional fixed step size or the newly proposed Least Mean Square (LMS) algorithm, a priori estimation of the algorithm parameters is required to achieve better results when processing signals of specific mathematical features. However, in the actual signal processing process, the estimation of the algorithm parameters is a very difficult process. In this paper, the mean square deviation and convergence characteristics of LMS algorithm are analyzed, and a variable step size LMS algorithm with relative error as variable is proposed, which can realize self-estimation of step control parameters. It can adapt signals of different mathematical features. The example shows that the new algorithm has faster convergence speed and smaller mean square error.
  • loading
  • [1]
    谢胜利, 何昭水, 高鹰. 信号处理的自适应理论[M]. 北京: 科学出版社, 2006: 2–7.
    [2]
    HUANG Fuyi, ZHANG Jiashu, and ZHANG Sheng. A family of robust adaptive filtering algorithms based on sigmoid cost[J]. Signal Processing, 2018, 149: 179–192. doi: 10.1016/j.sigpro.2018.03.013
    [3]
    高鹰, 谢胜利. 一种变步长LMS自适应滤波算法及分析[J]. 电子学报, 2001, 29(8): 1094–1097. doi: 10.3321/j.issn:0372-2112.2001.08.023

    GAO Ying and XIE Shengli. A variable step size LMS adaptive filtering algorithm and its analysis[J]. Acta Electronica Sinica, 2001, 29(8): 1094–1097. doi: 10.3321/j.issn:0372-2112.2001.08.023
    [4]
    樊宽刚, 邱海云. 基于Sigmoid框架的非负最小均方算法[J]. 电子与信息学报, 2021, 43(2): 349–355. doi: 10.11999/JEIT200018

    FAN Kuan’gang and QIU Haiyun. Robust nonnegative least mean square algorithm based on sigmoid framework[J]. Journal of Electronics &Information Technology, 2021, 43(2): 349–355. doi: 10.11999/JEIT200018
    [5]
    PEREZ F L, DE SOUZA F D C, and SEARA R. An improved mean-square weight deviation-proportionate gain algorithm based on error autocorrelation[J]. Signal Processing, 2014, 94: 503–513. doi: 10.1016/j.sigpro.2013.06.030
    [6]
    JIN Danqi, CHEN Jie, RICHARD C, et al. Model-driven online parameter adjustment for zero-attracting LMS[J]. Signal Processing, 2018, 152: 373–383. doi: 10.1016/j.sigpro.2018.06.020
    [7]
    BERSHAD N J, WEN Fuxi, and SO H C. Comments on “fractional LMS algorithm”[J]. Signal Processing, 2017, 133: 219–226. doi: 10.1016/j.sigpro.2016.11.009
    [8]
    SHI Long, ZHAO Haiquan, WANG Wenyuan, et al. Combined regularization parameter for normalized LMS algorithm and its performance analysis[J]. Signal Processing, 2019, 162: 75–82. doi: 10.1016/j.sigpro.2019.04.014
    [9]
    AHN D C, LEE J W, SHIN S J, et al. A new robust variable weighting coefficients diffusion LMS algorithm[J]. Signal Processing, 2017, 131: 300–306. doi: 10.1016/j.sigpro.2016.08.023
    [10]
    CHENG Songsong, WEI Yiheng, CHEN Yuquan, et al. A universal modified LMS algorithm with iteration order hybrid switching[J]. ISA Transactions, 2017, 67: 67–75. doi: 10.1016/j.isatra.2016.11.019
    [11]
    YANG Feiran and YANG Jun. Mean-square performance of the modified frequency-domain block LMS algorithm[J]. Signal Processing, 2019, 163: 18–25. doi: 10.1016/j.sigpro.2019.04.030
    [12]
    杨鹏程, 吕晓德, 柴致海, 等. 基于频域分块RDS-LMS算法的机载外辐射源雷达杂波对消[J]. 电子与信息学报, 2017, 39(10): 2302–2310. doi: 10.11999/JEIT170190

    YANG Pengcheng, LÜ Xiaode, CHAI Zhihai, et al. Clutter cancellation for airborne passive radar based on frequency-domain block RDS-LMS algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2302–2310. doi: 10.11999/JEIT170190
    [13]
    SADIGH A N, TAHERINIA A H, and YAZDI H S. Analysis of robust recursive least squares: Convergence and tracking[J]. Signal Processing, 2020, 171: 107482. doi: 10.1016/j.sigpro.2020.107482
    [14]
    赵海全, 李磊. 一种抗冲击噪声的对数总体最小二乘自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 284–288. doi: 10.11999/JEIT200344

    ZHAO Haiquan and LI Lei. A logarithmic total least squares adaptive filtering algorithm for impulsive noise suppression[J]. Journal of Electronics &Information Technology, 2021, 43(2): 284–288. doi: 10.11999/JEIT200344
    [15]
    EWEDA E. A new approach for analyzing the limiting behavior of the normalized LMS algorithm under weak assumptions[J]. Signal Processing, 2009, 89(11): 2143–2151. doi: 10.1016/j.sigpro.2009.04.040
    [16]
    ZHANG Sheng, ZHANG Jiashu, and SO H C. Mean square deviation analysis of LMS and NLMS algorithms with white reference inputs[J]. Signal Processing, 2017, 131: 20–26. doi: 10.1016/j.sigpro.2016.07.027
    [17]
    BERMUDEZ J C M, BERSHAD N J, and EWEDA E. Stochastic analysis of the LMS algorithm for cyclostationary colored Gaussian inputs[J]. Signal Processing, 2019, 160: 127–136. doi: 10.1016/j.sigpro.2019.02.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views (1308) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return