| Citation: | Yiwen XU, Chen YANG, Jie XU, Yang JIAO, Yaoyao CUI. Adaptive Spatiotemporal Clutter Rejection Based on Casorati-Singular Value Decompositionfor Ultrafast Plane-wave Doppler Imaging[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2334-2342. doi: 10.11999/JEIT200618 | 
 
	                | [1] | BERCOFF J, MONTALDO G, LOUPAS T, et al. Ultrafast compound doppler imaging: Providing full blood flow characterization[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(1): 134–147. doi:  10.1109/TUFFC.2011.1780 | 
| [2] | 尹华国, 何兴无, 周洪林. 基于CUDA的超声脉冲多普勒成像[J]. 计算机工程与应用, 2012, 48(19): 140–144. doi:  10.3778/j.issn.1002-8331.2012.19.033 YIN Huaguo, HE Xingwu, and ZHOU Honglin. Ultrasound pulsed wave doppler based on CUDA[J]. Computer Engineering and Applications, 2012, 48(19): 140–144. doi:  10.3778/j.issn.1002-8331.2012.19.033 | 
| [3] | 沈志远. 超声彩色血流成像中血流信号提取方法研究[D]. [博士论文], 哈尔滨工业大学, 2014. SHEN Zhiyuan. Blood flow signal extraction methd in ultrasound color flow imaging[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2014. | 
| [4] | BJAERUM S, TORP H, and KRISTOFFERSEN K. Clutter filter design for ultrasound color flow imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(2): 204–216. doi:  10.1109/58.985705 | 
| [5] | BJAERUM S, TORP H, and KRISTOFFERSEN K. Clutter filters adapted to tissue motion in ultrasound color flow imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(6): 693–704. doi:  10.1109/TUFFC.2002.1009328 | 
| [6] | 肖磊, 熊秀娟, 陈菲, 等. 超声血流成像中基于动态域的回归和奇异值分解的杂波抑制方法[J]. 计算机应用, 2015, 35(1): 265–269, 275. doi:  10.11772/j.issn.1001-9081.2015.01.0265 XIAO Lei, XIONG Xiujuan, CHEN Fei, et al. Clutter suppression method based on dynamic region regression and singular value decomposition in ultrasound flow image[J]. Journal of Computer Applications, 2015, 35(1): 265–269, 275. doi:  10.11772/j.issn.1001-9081.2015.01.0265 | 
| [7] | 肖磊. 彩色超声多普勒血流成像关键技术的研究[D]. [硕士论文], 西南科技大学, 2015. XIAO Lei. Color Doppler flow imaging study of key technologies[D]. [Master dissertation], Southwest University of Science and Technology, 2016. | 
| [8] | YOU Wei and WANG Yuanyuan. Adaptive clutter rejection for ultrasound color flow imaging based on recursive eigendecomposition[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(10): 2217–2231. doi:  10.1109/TUFFC.2009.1304 | 
| [9] | YOO Y M and KIM Y. New adaptive clutter rejection for ultrasound color Doppler imaging: In vivo study[J]. Ultrasound in Medicine and Biology, 2010, 36(3): 480–487. doi:  10.1016/j.ultrasmedbio.2009.11.008 | 
| [10] | MACE E, MONTALDO G, OSMANSKI B F, et al. Functional ultrasound imaging of the brain: Theory and basic principles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(3): 492–506. doi:  10.1109/TUFFC.2013.2592 | 
| [11] | DEMENÉ C, DEFFIEUX T, PERNOT M, et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and fUltrasound sensitivity[J]. IEEE Transactions on Medical Imaging, 2015, 34(11): 2271–2285. doi:  10.1109/TMI.2015.2428634 | 
| [12] | YU A C H and LOVSTAKKEN L. Eigen-based clutter filter design for ultrasound color flow imaging: A review[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(5): 1096–1111. doi:  10.1109/TUFFC.2010.1521 | 
| [13] | CHEUNG D K H, CHIU H C T, ZHANG Lequan, et al. Adaptive clutter filter design for micro-ultrasound color flow imaging of small blood vessels[C]. 2010 IEEE International Ultrasonics Symposium, San Diego, USA, 2010: 1206–1209. | 
| [14] | 王录涛, 王微, 金钢. 基于Hankel-SVD的非平稳超声血流成像杂波抑制技术研究[J]. 电子与信息学报, 2015, 37(4): 830–835. doi:  10.11999/JEIT140893 WANG Lutao, WANG Wei, and JIN Gang. Non-stationary clutter rejection based on Hankel-SVD for ultrasound color flow imaging[J]. Journal of Electronics &Information Technology, 2015, 37(4): 830–835. doi:  10.11999/JEIT140893 | 
| [15] | 王录涛, 吴锡, 金钢, 等. 一种基于奇异值谱加权的超声彩色多普勒成像杂波抑制算法[J]. 电子学报, 2016, 44(6): 1294–1299. doi:  10.3969/j.issn.0372-2112.2016.06.005 WANG Lutao, WU Xi, JIN Gang, et al. A singuiar-spectrai-weighting-based ciutter rejection method for coior uitrasound doppier I maging[J]. Acta Electronica Sinica, 2016, 44(6): 1294–1299. doi:  10.3969/j.issn.0372-2112.2016.06.005 | 
| [16] | 叶为镪, 郭宁, 王丛知, 等. 基于超声平面波的功率多普勒成像方法研究[J]. 集成技术, 2015, 4(3): 79–85. YE Weiqiang, GUO Ning, WANG Congzhi, et al. Study of power doppler imaging method with ultrasonic plane wave[J]. Journal of Integration Technology, 2015, 4(3): 79–85. | 
| [17] | TANTER M and FINK M. Ultrafast imaging in biomedical ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 102–119. doi:  10.1109/TUFFC.2014.2882 | 
| [18] | ERRICO C, PIERRE J, PEZET S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging[J]. Nature, 2015, 527(7579): 499–502. doi:  10.1038/nature16066 | 
| [19] | 尉明望. 超快速超声成像方法研究及其CUDA实现[D]. [硕士论文], 哈尔滨工业大学, 2016. WEI Mingwang. The research of ultrafast ultrasound imaging method and its implementation on CUDA[D]. [Master dissertation], Harbin Institute of Technology, 2016. | 
| [20] | DEFFIEUX T, DEMENE C, PERNOT M, et al. Functional ultrasound neuroimaging: A review of the preclinical and clinical state of the art[J]. Current Opinion in Neurobiology, 2018, 50: 128–135. doi:  10.1016/j.conb.2018.02.001 | 
| [21] | HINGOT V, ERRICO C, HEILES B, et al. Microvascular flow dictates the compromise between spatial resolution and acquisition time in Ultrasound Localization Microscopy[J]. Scientific Reports, 2019, 9(1): 2456. doi:  10.1038/s41598-018-38349-x | 
| [22] | CORREIA M, MARESCA D, GOUDOT G, et al. Quantitative imaging of coronary flows using 3D ultrafast Doppler coronary angiography[J]. Physics in Medicine & Biology, 2020, 65(10): 105013. | 
| [23] | HINGOT V, BRODIN C, LEBRUN F, et al. Early Ultrafast Ultrasound Imaging of Cerebral Perfusion correlates with Ischemic Stroke outcomes and responses to treatment in Mice[J]. Theranostics, 2020, 10(17): 7480–7491. doi:  10.7150/thno.44233 | 
| [24] | MARESCA D, PAYEN T, LEE-GOSSELIN A, et al. Acoustic biomolecules enhance hemodynamic functional ultrasound imaging of neural activity[J]. NeuroImage, 2020, 209: 116467. doi:  10.1016/j.neuroimage.2019.116467 | 
| [25] | RAHAL L, THIBAUT M, RIVALS I, et al. Ultrafast ultrasound imaging pattern analysis reveals distinctive dynamic brain states and potent sub-network alterations in arthritic animals[J]. Scientific Reports, 2020, 10(1): 10485. doi:  10.1038/s41598-020-66967-x | 
| [26] | SONG Pengfei, MANDUCA A, TRZASKO J D, et al. Ultrasound small vessel imaging with block-wise adaptive local clutter filtering[J]. IEEE Transactions on Medical Imaging, 2017, 36(1): 251–262. doi:  10.1109/TMI.2016.2605819 | 
| [27] | ARNAL B, BARANGER J, DEMENE C, et al. In vivo real-time cavitation imaging in moving organs[J]. Physics in Medicine & Biology, 2017, 62(3): 843–857. | 
| [28] | BARANGER J, ARNAL B, PERREN F, et al. Adaptive spatiotemporal SVD clutter filtering for Ultrafast Doppler Imaging using similarity of spatial singular vectors[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1574–1586. doi:  10.1109/TMI.2018.2789499 | 
