Advanced Search
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Yiwen XU, Chen YANG, Jie XU, Yang JIAO, Yaoyao CUI. Adaptive Spatiotemporal Clutter Rejection Based on Casorati-Singular Value Decompositionfor Ultrafast Plane-wave Doppler Imaging[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2334-2342. doi: 10.11999/JEIT200618
Citation: Yiwen XU, Chen YANG, Jie XU, Yang JIAO, Yaoyao CUI. Adaptive Spatiotemporal Clutter Rejection Based on Casorati-Singular Value Decompositionfor Ultrafast Plane-wave Doppler Imaging[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2334-2342. doi: 10.11999/JEIT200618

Adaptive Spatiotemporal Clutter Rejection Based on Casorati-Singular Value Decompositionfor Ultrafast Plane-wave Doppler Imaging

doi: 10.11999/JEIT200618
Funds:  The National Natural Science Foundation of China (51805529); Jiangsu Provincial Key Research and Development Plan (BE2017601, BE2017661)
  • Received Date: 2020-07-24
  • Rev Recd Date: 2021-03-19
  • Available Online: 2021-04-13
  • Publish Date: 2021-08-10
  • By using compounded plane wave, it enables the high-frame-rate acquisition of synchronous ultrasonic samples in the all field of view. However, classical clutter filters fail to deal with these big synchronous imaging datasets. In this study, an improved adaptive clutter rejection algorithm based on Casorati Singular Value Decomposition (Casorati-SVD) is proposed to take full advantage of synchronous datasets. The first step is to construct a Casorati matrix based on a block of plane-wave data and perform singular value decomposition on this Casorati matrix. Then the key point is to adaptively determine the cufoff thresholds according to Doppler frequency and energy of component signals and the blood flow signal is extracted through auto-generated filter. Finally, adaptive SVD filtering on each block is performed and the final flow signals are reconstructed from all blocks. To assess its ability in noise suppression, the proposed method is applied to blood flow echos obtained from phantom, arm artery and rabbit brain. These results demonstrate the improved method has 4.4% to 50% higher Signal-to-Noise-Ratio (SNR) and 4.7% to 55.9% Contrast-to-Noise-Ratio (CNR) than conventional Casorati-SVD methods. In conclusion, this method realizes spatial adaptive filtering and can be significant for development of clinical blood flow imaging.
  • loading
  • [1]
    BERCOFF J, MONTALDO G, LOUPAS T, et al. Ultrafast compound doppler imaging: Providing full blood flow characterization[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(1): 134–147. doi: 10.1109/TUFFC.2011.1780
    [2]
    尹华国, 何兴无, 周洪林. 基于CUDA的超声脉冲多普勒成像[J]. 计算机工程与应用, 2012, 48(19): 140–144. doi: 10.3778/j.issn.1002-8331.2012.19.033

    YIN Huaguo, HE Xingwu, and ZHOU Honglin. Ultrasound pulsed wave doppler based on CUDA[J]. Computer Engineering and Applications, 2012, 48(19): 140–144. doi: 10.3778/j.issn.1002-8331.2012.19.033
    [3]
    沈志远. 超声彩色血流成像中血流信号提取方法研究[D]. [博士论文], 哈尔滨工业大学, 2014.

    SHEN Zhiyuan. Blood flow signal extraction methd in ultrasound color flow imaging[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2014.
    [4]
    BJAERUM S, TORP H, and KRISTOFFERSEN K. Clutter filter design for ultrasound color flow imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(2): 204–216. doi: 10.1109/58.985705
    [5]
    BJAERUM S, TORP H, and KRISTOFFERSEN K. Clutter filters adapted to tissue motion in ultrasound color flow imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(6): 693–704. doi: 10.1109/TUFFC.2002.1009328
    [6]
    肖磊, 熊秀娟, 陈菲, 等. 超声血流成像中基于动态域的回归和奇异值分解的杂波抑制方法[J]. 计算机应用, 2015, 35(1): 265–269, 275. doi: 10.11772/j.issn.1001-9081.2015.01.0265

    XIAO Lei, XIONG Xiujuan, CHEN Fei, et al. Clutter suppression method based on dynamic region regression and singular value decomposition in ultrasound flow image[J]. Journal of Computer Applications, 2015, 35(1): 265–269, 275. doi: 10.11772/j.issn.1001-9081.2015.01.0265
    [7]
    肖磊. 彩色超声多普勒血流成像关键技术的研究[D]. [硕士论文], 西南科技大学, 2015.

    XIAO Lei. Color Doppler flow imaging study of key technologies[D]. [Master dissertation], Southwest University of Science and Technology, 2016.
    [8]
    YOU Wei and WANG Yuanyuan. Adaptive clutter rejection for ultrasound color flow imaging based on recursive eigendecomposition[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(10): 2217–2231. doi: 10.1109/TUFFC.2009.1304
    [9]
    YOO Y M and KIM Y. New adaptive clutter rejection for ultrasound color Doppler imaging: In vivo study[J]. Ultrasound in Medicine and Biology, 2010, 36(3): 480–487. doi: 10.1016/j.ultrasmedbio.2009.11.008
    [10]
    MACE E, MONTALDO G, OSMANSKI B F, et al. Functional ultrasound imaging of the brain: Theory and basic principles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(3): 492–506. doi: 10.1109/TUFFC.2013.2592
    [11]
    DEMENÉ C, DEFFIEUX T, PERNOT M, et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and fUltrasound sensitivity[J]. IEEE Transactions on Medical Imaging, 2015, 34(11): 2271–2285. doi: 10.1109/TMI.2015.2428634
    [12]
    YU A C H and LOVSTAKKEN L. Eigen-based clutter filter design for ultrasound color flow imaging: A review[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(5): 1096–1111. doi: 10.1109/TUFFC.2010.1521
    [13]
    CHEUNG D K H, CHIU H C T, ZHANG Lequan, et al. Adaptive clutter filter design for micro-ultrasound color flow imaging of small blood vessels[C]. 2010 IEEE International Ultrasonics Symposium, San Diego, USA, 2010: 1206–1209.
    [14]
    王录涛, 王微, 金钢. 基于Hankel-SVD的非平稳超声血流成像杂波抑制技术研究[J]. 电子与信息学报, 2015, 37(4): 830–835. doi: 10.11999/JEIT140893

    WANG Lutao, WANG Wei, and JIN Gang. Non-stationary clutter rejection based on Hankel-SVD for ultrasound color flow imaging[J]. Journal of Electronics &Information Technology, 2015, 37(4): 830–835. doi: 10.11999/JEIT140893
    [15]
    王录涛, 吴锡, 金钢, 等. 一种基于奇异值谱加权的超声彩色多普勒成像杂波抑制算法[J]. 电子学报, 2016, 44(6): 1294–1299. doi: 10.3969/j.issn.0372-2112.2016.06.005

    WANG Lutao, WU Xi, JIN Gang, et al. A singuiar-spectrai-weighting-based ciutter rejection method for coior uitrasound doppier I maging[J]. Acta Electronica Sinica, 2016, 44(6): 1294–1299. doi: 10.3969/j.issn.0372-2112.2016.06.005
    [16]
    叶为镪, 郭宁, 王丛知, 等. 基于超声平面波的功率多普勒成像方法研究[J]. 集成技术, 2015, 4(3): 79–85.

    YE Weiqiang, GUO Ning, WANG Congzhi, et al. Study of power doppler imaging method with ultrasonic plane wave[J]. Journal of Integration Technology, 2015, 4(3): 79–85.
    [17]
    TANTER M and FINK M. Ultrafast imaging in biomedical ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 102–119. doi: 10.1109/TUFFC.2014.2882
    [18]
    ERRICO C, PIERRE J, PEZET S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging[J]. Nature, 2015, 527(7579): 499–502. doi: 10.1038/nature16066
    [19]
    尉明望. 超快速超声成像方法研究及其CUDA实现[D]. [硕士论文], 哈尔滨工业大学, 2016.

    WEI Mingwang. The research of ultrafast ultrasound imaging method and its implementation on CUDA[D]. [Master dissertation], Harbin Institute of Technology, 2016.
    [20]
    DEFFIEUX T, DEMENE C, PERNOT M, et al. Functional ultrasound neuroimaging: A review of the preclinical and clinical state of the art[J]. Current Opinion in Neurobiology, 2018, 50: 128–135. doi: 10.1016/j.conb.2018.02.001
    [21]
    HINGOT V, ERRICO C, HEILES B, et al. Microvascular flow dictates the compromise between spatial resolution and acquisition time in Ultrasound Localization Microscopy[J]. Scientific Reports, 2019, 9(1): 2456. doi: 10.1038/s41598-018-38349-x
    [22]
    CORREIA M, MARESCA D, GOUDOT G, et al. Quantitative imaging of coronary flows using 3D ultrafast Doppler coronary angiography[J]. Physics in Medicine & Biology, 2020, 65(10): 105013.
    [23]
    HINGOT V, BRODIN C, LEBRUN F, et al. Early Ultrafast Ultrasound Imaging of Cerebral Perfusion correlates with Ischemic Stroke outcomes and responses to treatment in Mice[J]. Theranostics, 2020, 10(17): 7480–7491. doi: 10.7150/thno.44233
    [24]
    MARESCA D, PAYEN T, LEE-GOSSELIN A, et al. Acoustic biomolecules enhance hemodynamic functional ultrasound imaging of neural activity[J]. NeuroImage, 2020, 209: 116467. doi: 10.1016/j.neuroimage.2019.116467
    [25]
    RAHAL L, THIBAUT M, RIVALS I, et al. Ultrafast ultrasound imaging pattern analysis reveals distinctive dynamic brain states and potent sub-network alterations in arthritic animals[J]. Scientific Reports, 2020, 10(1): 10485. doi: 10.1038/s41598-020-66967-x
    [26]
    SONG Pengfei, MANDUCA A, TRZASKO J D, et al. Ultrasound small vessel imaging with block-wise adaptive local clutter filtering[J]. IEEE Transactions on Medical Imaging, 2017, 36(1): 251–262. doi: 10.1109/TMI.2016.2605819
    [27]
    ARNAL B, BARANGER J, DEMENE C, et al. In vivo real-time cavitation imaging in moving organs[J]. Physics in Medicine & Biology, 2017, 62(3): 843–857.
    [28]
    BARANGER J, ARNAL B, PERREN F, et al. Adaptive spatiotemporal SVD clutter filtering for Ultrafast Doppler Imaging using similarity of spatial singular vectors[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1574–1586. doi: 10.1109/TMI.2018.2789499
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1454) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return