Citation: | Xinxin WANG, Xiang WANG, Jianchao FAN, Lin WANG, Qinghui MENG, Enbo WEI. Analysis of RF Interference Characteristics of Broadcasting Satellite TV Receivers to SMAP Satellite L-Band Microwave Radiometer[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2292-2299. doi: 10.11999/JEIT200593 |
[1] |
DINNAT E P, LE VINE D M, BOUTIN J, et al. Satellite sea surface salinity: Evaluation of products and impact of retrieval algorithms[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 7936–7939. doi: 10.1109/IGARSS.2019.8899065.
|
[2] |
FORE A, YUEH S, TANG Wenqing, et al. The JPL SMAP sea surface salinity algorithm[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 7920–7923. doi: 10.1109/IGARSS.2019.8898359.
|
[3] |
OLIVA R, DAGANZO E, KERR Y H, et al. SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1427–1439. doi: 10.1109/TGRS.2012.2182775
|
[4] |
LE VINE D M, DE MATTHAEIS P, RUF C S, et al. Aquarius RFI detection and mitigation algorithm: Assessment and examples[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4574–4584. doi: 10.1109/TGRS.2013.2282595
|
[5] |
MISRA S, JOHNSON J, AKSOY M, et al. SMAP RFI mitigation algorithm performance characterization using airborne high-rate direct-sampled SMAPVEX 2012 data[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 41–44. doi: 10.1109/IGARSS.2013.6721087.
|
[6] |
MOHAMMED P N, AKSOY M, PIEPMEIER J R, et al. SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6035–6047. doi: 10.1109/TGRS.2016.2580459
|
[7] |
CAMPS A J, CORBELLA I, TORRES F, et al. RF interference analysis in aperture synthesis interferometric radiometers: Application to L-band MIRAS instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 942–950. doi: 10.1109/36.841976
|
[8] |
CAMPS A, GOURRION J, TARONGI J M, et al. Radio-frequency interference detection and mitigation algorithms for synthetic aperture radiometers[J]. Algorithms, 2011, 4(3): 155–182. doi: 10.3390/a4030155
|
[9] |
PARK J, JOHNSON J T, MAJUREC N, et al. Airborne L-Band radio frequency interference observations from the SMAPVEX08 campaign and associated flights[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3359–3370. doi: 10.1109/TGRS.2011.2107560
|
[10] |
SOLDO Y, DE MATTHAEIS P, and LE VINE D M. L-band RFI in Japan[C].2016 Radio Frequency Interference (RFI), Socorro, USA, 2016: 111–114. doi: 10.1109/RFINT.2016.7833542.
|
[11] |
LE VINE D M, JOHNSON J T, and PIEPMEIER J. RFI and remote sensing of the earth from space[C]. 2016 Radio Frequency Interference (RFI), Socorro, USA, 2016: 49–54. doi: 10.1109/RFINT.2016.7833530.
|
[12] |
SOLDO Y, LE VINE D M, DE MATTHAEIS P, et al. L-Band RFI detected by SMOS and Aquarius[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4220–4235. doi: 10.1109/TGRS.2017.2690406
|
[13] |
MIRANDA J J, VALL-LLOSSERA M, CAMPS A, et al. Sea state effect on the sea surface emissivity at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2307–2315. doi: 10.1109/TGRS.2003.817190
|
[14] |
KERR Y H, WALDTEUFEL P, WIGNERON J P, et al. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1729–1735. doi: 10.1109/36.942551
|
[15] |
MISRA S and RUF C S. Detection of radio-frequency interference for the Aquarius radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3123–3128. doi: 10.1109/TGRS.2008.920371
|
[16] |
PIEPMEIER J R, JOHNSON J T, MOHAMMED P N, et al. Radio-frequency interference mitigation for the soil moisture active passive microwave radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 761–775. doi: 10.1109/TGRS.2013.2281266
|
[17] |
王新新, 王祥, 韩震, 等. 基于L波段Stokes参数遥感数据射频干扰检测及特性分析[J]. 电子与信息学报, 2015, 37(10): 2342–2348. doi: 10.11999/JEIT141577
WANG Xinxin, WANG Xiang, HAN Zhen, et al. Radio frequency interference detection and characteristic analysis based on the L band Stokes parameters remote sensing data[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2342–2348. doi: 10.11999/JEIT141577
|
[18] |
PENG Jinzheng, MISRA S, CHAN S, et al. SMAP radiometer brightness temperature calibration for the L1B_TB, L1C_TB (Version 4), and L1C_TB_E (Version 2) data products[EB/OL]. https://nsidc.org/sites/nsidc.org/files/technical-references/SMAP_L1_Assessment%20Report%2020180601_v9.pdf.2020.2.
|
[19] |
QUEROL J, PEREZ A, and CAMPS A. A review of RFI mitigation techniques in microwave radiometry[J]. Remote Sensing, 2019, 11(24): 3042. doi: 10.3390/rs11243042
|
[20] |
DAGANZO E, OLIVA R, RICHAUME P, et al. SMOS RFI experience in the 1400–1427 MHz passive band: Case of extended interference caused by broadcasting satellite home-TV receivers[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 4455–4458. doi: 10.1109/IGARSS.2019.8897873.
|
[21] |
AKSOY M. Radio frequency interference characterization and detection in L-band microwave radiometry[D]. [Ph. D. dissertation], The Ohio State University, 2015.
|
[22] |
PIEPMEIER J R, FOCARDI P, HORGAN K A, et al. SMAP L-band microwave radiometer: Instrument design and first year on orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1954–1966. doi: 10.1109/TGRS.2016.2631978
|
[23] |
SOLDO Y, LE VINE D M, BRINGER A, et al. Recent advances in Smap RFI processing[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 313–315. doi: 10.1109/IGARSS.2018.8518891.
|
[24] |
SOLDO Y, LE VINE D M, BRINGER A, et al. Location of radio-frequency interference sources using the SMAP L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6854–6866. doi: 10.1109/TGRS.2018.2844127
|
[25] |
姜涛, 赵凯, 万祥坤. L波段微波辐射计周期脉冲式干扰时域检测方法研究[J]. 电子与信息学报, 2018, 40(7): 1539–1545. doi: 10.11999/JEIT170954
JIANG Tao, ZHAO Kai, and WAN Xiangkun. Research on detection methods to periodic pulsed interference for L band microwave radiometer in time domain[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1539–1545. doi: 10.11999/JEIT170954
|
[26] |
KRISTENSEN S S, BALLING J E, SKOU N, et al. RFI detection in SMOS data using 3rd and 4th Stokes parameters[C]. The 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Rome, Italy, 2012: 1–4. doi: 10.1109/MicroRad.2012.6185254.
|
[27] |
WANG Xinxin, WANG Xiang, FAN Jianchao, et al. Automatic detection and identification of RFI sources for SMAP satellite polarized data based on IDL[C]. The 10th International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh, Morocco, 2019: 76–80. doi: 10.1109/ICICIP47338.2019.9012190.
|
[28] |
马廷. 夜光遥感大数据视角下的中国城市化时空特征[J]. 地球信息科学学报, 2019, 21(1): 59–67. doi: 10.12082/dqxxkx.2019.180361
MA Ting. Spatiotemporal characteristics of urbanization in china from the perspective of remotely sensed big data of nighttime light[J]. Journal of Geo-Information Science, 2019, 21(1): 59–67. doi: 10.12082/dqxxkx.2019.180361
|
[29] |
JIN Rong, LI Qingxia, and LIU Hang. A subspace algorithm to mitigate energy unknown RFI for synthetic aperture interferometric radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 227–237. doi: 10.1109/TGRS.2019.2936005
|